Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation

The main aim of this paper is to apply the conforming bilinear finite element to solve the nonlinear Schrodinger equation (NLSE). Firstly, the stability and convergence for time discrete scheme are proved. Secondly, through a new estimate approach, the optimal order error estimates and superclose properties in H1-norm are obtained with Backward Euler (B-E) and Crank-Nicolson (C-N) fully-discrete schemes, the global superconvergence results are deduced with the help of interpolation postprocessing technique. Finally, some numerical examples are provided to verify the theoretical analysis.

[1]  Charalambos Makridakis,et al.  A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method , 1998, Math. Comput..

[2]  Mehdi Dehghan,et al.  Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method , 2015, J. Comput. Appl. Math..

[3]  Mehdi Dehghan,et al.  Numerical solution to the unsteady two‐dimensional Schrödinger equation using meshless local boundary integral equation method , 2008 .

[4]  Yadong Zhang,et al.  High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations , 2011, Appl. Math. Comput..

[5]  Li Wu,et al.  Two‐grid mixed finite‐element methods for nonlinear Schrödinger equations , 2012 .

[6]  Georgios Akrivis,et al.  Finite difference discretization of the cubic Schrödinger equation , 1993 .

[7]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[8]  Y. Tourigny,et al.  Optimal H1 Estimates for two Time-discrete Galerkin Approximations of a Nonlinear Schrödinger Equation , 1991 .

[9]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[10]  Mostafa Abbaszadeh,et al.  The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics , 2013 .

[11]  Mehdi Dehghan,et al.  Analysis of two methods based on Galerkin weak form for fractional diffusion-wave: Meshless interpolating element free Galerkin (IEFG) and finite element methods , 2016 .

[12]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[13]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[14]  Qianshun Chang,et al.  Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .

[15]  Charalambos Makridakis,et al.  A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method , 1999 .

[16]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[17]  Mehdi Dehghan,et al.  Numerical Solution of System of N–Coupled NonlinearSchrödinger Equations via Two Variants of the MeshlessLocal Petrov–Galerkin (MLPG) Method , 2014 .

[18]  Ameneh Taleei,et al.  A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients , 2010, Comput. Phys. Commun..

[19]  Dongyang Shi,et al.  Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..

[20]  Xiaonan Wu,et al.  Analysis of finite element method for one-dimensional time-dependent Schrödinger equation on unbounded domain , 2008 .