A higher order correlation unscented Kalman filter

Many nonlinear extensions of the Kalman filter, e.g., the extended and the unscented Kalman filter, reduce the state densities to Gaussian densities. This approximation gives sufficient results in many cases. However, this filters only estimate states that are correlated with the observation. Therefore, sequential estimation of diffusion parameters, e.g., volatility, which are not correlated with the observations is not possible. While other filters overcome this problem with simulations, we extend the measurement update of the Gaussian two-moment filters by a higher order correlation measurement update. We explicitly state formulas for a higher order unscented Kalman filter within a continuous-discrete state space. We demonstrate the filter in the context of parameter estimation of an Ornstein-Uhlenbeck process.

[1]  Hermann Singer Nonlinear continuous-discrete filtering using kernel density estimatesand functional integrals , 2003 .

[2]  M. Crowder On linear and quadratic estimating functions , 1987 .

[3]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[4]  V. P. Godambe,et al.  An extension of quasi-likelihood estimation , 1989 .

[5]  U. V. Naik-Nimbalkar,et al.  Filtering and Smoothing via Estimating Functions , 1995 .

[6]  Eduardo S. Schwartz The stochastic behavior of commodity prices: Implications for valuation and hedging , 1997 .

[7]  Eduardo S. Schwartz,et al.  Electricity Prices and Power Derivatives: Evidence from the Nordic Power Exchange , 2000 .

[8]  Aurora Hermoso-Carazo,et al.  Different approaches for state filtering in nonlinear systems with uncertain observations , 2007, Appl. Math. Comput..

[9]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[10]  Wolfgang Wefelmeyer,et al.  Quasi-likelihood models and optimal inference , 1996 .

[11]  Hisashi Tanizaki,et al.  Nonlinear filters , 1993 .

[12]  Martin Crowder,et al.  On Consistency and Inconsistency of Estimating Equations , 1986, Econometric Theory.

[13]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[14]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[15]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[16]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[17]  Hisashi Tanizaki,et al.  Nonlinear Filters: Estimation and Applications , 1993 .

[18]  C. Heyde On combining quasi-likelihood estimating functions , 1987 .

[19]  M. Thompson,et al.  Filtering via estimating functions , 1999 .

[20]  Uri Lerner,et al.  Hybrid Bayesian networks for reasoning about complex systems , 2002 .

[21]  J. McNamee,et al.  Construction of fully symmetric numerical integration formulas of fully symmetric numerical integration formulas , 1967 .