Universality of the Bottleneck Distance for Extended Persistence Diagrams

The extended persistence diagram is an invariant of piecewise linear functions, introduced by Cohen-Steiner, Edelsbrunner, and Harer. The bottleneck distance has been introduced by the same authors as an extended pseudometric on the set of extended persistence diagrams, which is stable under perturbations of the function. We address the question whether the bottleneck distance is the largest possible stable distance, providing an affirmative answer.

[1]  Herbert Edelsbrunner,et al.  Homology and Robustness of Level and Interlevel Sets , 2011, ArXiv.

[2]  Amit Patel,et al.  Bottleneck stability for generalized persistence diagrams , 2018, Proceedings of the American Mathematical Society.

[3]  Gunnar Carlsson,et al.  Parametrized homology via zigzag persistence , 2019, Algebraic & Geometric Topology.

[4]  Michael Lesnick,et al.  The Theory of the Interleaving Distance on Multidimensional Persistence Modules , 2011, Found. Comput. Math..

[5]  Dmitriy Morozov,et al.  Zigzag persistent homology and real-valued functions , 2009, SCG '09.

[6]  David Cohen-Steiner,et al.  Extending Persistence Using Poincaré and Lefschetz Duality , 2009, Found. Comput. Math..

[7]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[8]  Steve Oudot,et al.  Level-sets persistence and sheaf theory , 2019, ArXiv.

[9]  R. Ho Algebraic Topology , 2022 .

[10]  Tamal K. Dey,et al.  Stability of Critical Points with Interval Persistence , 2007, Discret. Comput. Geom..

[11]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[12]  Vin de Silva,et al.  Categorification of Gromov-Hausdorff Distance and Interleaving of Functors , 2017 .