Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers

The trade-off between the spectral bandwidth and average output power from chalcogenide fiber-based mid-infrared supercontinuum sources is one of the major challenges towards practical application of the technology. In this paper we address this challenge through tapering of large-mode-area chalcogenide photonic crystal fibers. Compared to previously reported step-index fiber tapers the photonic crystal fiber structure ensures singlemode propagation, which improves the beam quality and reduces losses in the taper due to higher-order mode stripping. By pumping the tapered fibers at 4 μm using a MHz optical parametric generation source, and choosing an appropriate length of the untapered fiber segments, the output could be tailored for either the broadest bandwidth from 1 to 11.5 μm with 35.4 mW average output power, or the highest output power of 57.3 mW covering a spectrum from 1 to 8 μm. © 2017 Optical Society of America OCIS codes: (320.6629) Supercontinuum generation; (190.4370) Nonlinear optics, fibers; (060.2390) Fiber optics, infrared. References and links 1. B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014). 2. B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. LutherDavies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015). 3. G. S. Athanasiou, J. Ernst, D. Furniss, T. M. Benson, J. Chauhan, J. Middleton, C. Parmenter, M. Fay, N. Neate, V. Shiryaev, M. F. Churbanov, and A. B. Seddon, “Toward mid-infrared, subdiffraction, spectral-mapping of human cells and tissue: SNIM (Scanning near-field infrared microscopy) tip fabrication,” J. Lightwave Technol. 34(4), 1212–1219 (2016). 4. A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011). 5. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014). 6. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117– 2120 (2016). 7. R. Gattass, L. Shaw, V. Nguyen, P. Pureza, I. Aggarwal, and J. Sanghera, “All-fiber chalcogenide-based midinfrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012). 8. S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40(11), 2668–2671 (2015). Vol. 25, No. 13 | 26 Jun 2017 | OPTICS EXPRESS 15336 #295542 Journal © 2017 https://doi.org/10.1364/OE.25.015336 Received 9 May 2017; revised 10 Jun 2017; accepted 12 Jun 2017; published 22 Jun 2017 9. M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016). 10. B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2-12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016). 11. T. A. Birks, W. J. Wadsworth, and P. S. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000). 12. S. Shabahang, G. Tao, M. Marquez, H. Hu, T. Ensley, P. Delfyett, and A. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31(3), 450–457 (2014). 13. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20(22), 24218–24225 (2012). 14. C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As2S3 fiber pumped by a thulium-doped fiber laser,” Opt. Lett. 38(15), 2865–2868 (2013). 15. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011). 16. Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015). 17. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J. C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010). 18. P. Toupin, L. Brilland, D. Mechin, J.-L. Adam, and J. Troles, “Optical aging of chalcogenide microstructured optical Fibers,” J. Lightwave Technol. 32(13), 2428–2432 (2014). 19. W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13(17), 6541–6549 (2005). 20. J. Hu, C. Menyuk, L. Shaw, J. Sanghera, and I. Aggarwal, “A mid-IR source with increased bandwidth using tapered chalcogenide photonic crystal fibers,” Opt. Commun. 293, 116–118 (2013). 21. J. Lægsgaard, “Modeling of nonlinear propagation in fiber tapers,” J. Opt. Soc. Am. B 29(11), 3183–3191 (2012). 22. J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15(24), 16110–16123 (2007). 23. M. Kolesik, E. Wright, and J. Moloney, “Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers,” Appl. Phys. B 79(3), 293–300 (2004). 24. T. Kohoutek, X. Yan, T. Shiosaka, S. Yannopoulos, A. Chrissanthopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Soc. Am. B 28, 2294 (2011). 25. A. Prasad, C. J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008). 26. J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34(2), 115–117 (2009). 27. A. Judge, O. Bang, B. Eggleton, B. Kuhlmey, E. Mägi, R. Pant, and C. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26(11), 2064–2071 (2009). 28. S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles--verification of GAM,” Opt. Express 20(10), 10635–10645 (2012). 29. L. Liu, K. Nagasaka, G. Qin, T. Suzuki, and Y. Ohishi, “Coherence property of mid-infrared supercontinuum generation in tapered chalcogenide fibers with different structures,” Appl. Phys. Lett. 108(1), 011101 (2016). 30. P. Toupin, L. Brilland, J. Troles, and J.-L. Adam, “Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses,” Opt. Mater. Express 2(10), 1359–1366 (2012). 31. C. Florea, J. Sanghera, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers obtained through fiber-end microstructuring,” Appl. Opt. 50(1), 17–21 (2011). 32. C. Markos, “Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers,” Sci. Rep. 6(1), 31711 (2016).

[1]  J R Taylor,et al.  Soliton trapping of dispersive waves in tapered optical fibers. , 2009, Optics letters.

[2]  Alireza Marandi,et al.  Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm. , 2012, Optics express.

[3]  J. Lægsgaard Modeling of nonlinear propagation in fiber tapers , 2012 .

[4]  Jasbinder S. Sanghera,et al.  All-fiber chalcogenide-based mid-infrared supercontinuum source , 2012 .

[5]  Yi Yu,et al.  High-resolution chalcogenide fiber bundles for infrared imaging. , 2015, Optics letters.

[6]  Yi Yu,et al.  High brightness 2.2-12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber , 2016 .

[7]  Tonglei Cheng,et al.  Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber. , 2016, Optics letters.

[8]  B. Luther-Davies,et al.  Properties of GexAsySe 1x-y glasses for all-optical signal processing , 2008 .

[9]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[10]  H. Giessen,et al.  High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber. , 2015, Optics letters.

[11]  Stuart D. Jackson,et al.  Octave spanning supercontinuum in an As2S3 taper using ultra-low pump pulse energy , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[12]  Christos Markos,et al.  Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers , 2016, Scientific Reports.

[13]  Yanrong Song,et al.  Supercontinuum generation in tapered fibers , 2009, 2009 Asia Communications and Photonics conference and Exhibition (ACP).

[14]  Christos Markos,et al.  Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. , 2017, Optics express.

[15]  Benjamin J. Eggleton,et al.  Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber , 2009 .

[16]  Guangming Tao,et al.  Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures. , 2015, Optics express.

[17]  J. Laegsgaard Mode profile dispersion in the generalised nonlinear Schrödinger equation. , 2007, Optics express.

[18]  Alireza Marandi,et al.  Octave-spanning supercontinuum generation in in situ tapered As₂S₃ fiber pumped by a thulium-doped fiber laser. , 2013, Optics letters.

[19]  Takenobu Suzuki,et al.  Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers , 2011 .

[20]  Miroslav Kolesik,et al.  Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers , 2004 .

[21]  S. Leon-Saval,et al.  Hole inflation and tapering of stock photonic crystal fibres. , 2005, Optics express.

[22]  Olivier Sire,et al.  Chalcogenide optical fibers for mid-infrared sensing , 2014 .

[23]  G. Qin,et al.  Coherence property of mid-infrared supercontinuum generation in tapered chalcogenide fibers with different structures , 2016 .

[24]  A. Seddon A Prospective for New Mid‐Infrared Medical Endoscopy Using Chalcogenide Glasses , 2011 .

[25]  J. Świderski,et al.  Mid-infrared, super-flat, supercontinuum generation covering the 2–5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses , 2016, Scientific Reports.

[26]  T. Andersen,et al.  Deep-blue supercontinnum sources with optimum taper profiles--verification of GAM. , 2012, Optics express.

[27]  Michael P. Marquez,et al.  Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation , 2014 .

[28]  A. Seddon,et al.  Toward Mid-Infrared, Subdiffraction, Spectral-Mapping of Human Cells and Tissue: SNIM (Scanning Near-Field Infrared Microscopy) Tip Fabrication , 2016, Journal of Lightwave Technology.

[29]  Laurent Brilland,et al.  Casting method for producing low-loss chalcogenide microstructured optical fibers. , 2010, Optics express.

[30]  Brandon Shaw,et al.  Reduced Fresnel losses in chalcogenide fibers obtained through fiber-end microstructuring. , 2011, Applied optics.

[31]  Jean-Luc Adam,et al.  Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses , 2012 .

[32]  J. Adam,et al.  Optical Aging of Chalcogenide Microstructured Optical Fibers , 2014, Journal of Lightwave Technology.