Efficiency of energy conversion for a piezoelectric power harvesting system

This paper studies the energy conversion efficiency for a rectified piezoelectric power harvester. An analytical model is proposed, and an expression of efficiency is derived under steady-state operation. In addition, the relationship among the conversion efficiency, electrically induced damping and ac–dc power output is established explicitly. It is shown that the optimization criteria are different depending on the relative strength of the coupling. For the weak electromechanical coupling system, the optimal power transfer is attained when the efficiency and induced damping achieve their maximum values. This result is consistent with that observed in the recent literature. However, a new finding shows that they are not simultaneously maximized in the strongly coupled electromechanical system.

[1]  Y. Shu,et al.  Analysis of power output for piezoelectric energy harvesting systems , 2006 .

[2]  Heath Hofmann,et al.  Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode , 2003 .

[3]  G.K. Ottman,et al.  Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode , 2002, 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289).

[4]  Francois Costa,et al.  Energy harvesting from vibration using a piezoelectric membrane , 2005 .

[5]  Daniel J. Inman,et al.  Generation and Storage of Electricity from Power Harvesting Devices , 2005 .

[6]  Siak Piang Lim,et al.  Contact modeling of viscoelastic friction layer of traveling wave ultrasonic motors , 2001 .

[7]  Alex Elvin,et al.  A self-powered mechanical strain energy sensor , 2001 .

[8]  Anantha P. Chandrakasan,et al.  Trends in low power digital signal processing , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[9]  Heath Hofmann,et al.  Damping as a result of piezoelectric energy harvesting , 2004 .

[10]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[11]  Michael J. Anderson,et al.  Efficiency of energy conversion for devices containing a piezoelectric component , 2004 .

[12]  Michael Goldfarb,et al.  On the Efficiency of Electric Power Generation With Piezoelectric Ceramic , 1999 .

[13]  Daniel J. Inman,et al.  Estimation of Electric Charge Output for Piezoelectric Energy Harvesting , 2004 .

[14]  Jan M. Rabaey,et al.  Power Sources for Wireless Sensor Networks , 2004, EWSN.

[15]  Wei-Hsin Liao,et al.  Sensitivity Analysis and Energy Harvesting for a Self-Powered Piezoelectric Sensor , 2005 .

[16]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless, remote power supply , 2001 .

[17]  Robert F. Richards,et al.  Design, fabrication and testing of the P3 micro heat engine , 2003 .

[18]  C. Richards,et al.  Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment , 2005 .

[19]  Claude Richard,et al.  Single crystals and nonlinear process for outstanding vibration-powered electrical generators , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  Yi-Chung Shu,et al.  Analysis of power output for piezoelectric energy harvesting systems , 2006 .

[21]  William W. Clark,et al.  Piezoelectric Energy Harvesting with a Clamped Circular Plate: Experimental Study , 2005 .

[22]  Nesbitt W. Hagood,et al.  Modelling of Piezoelectric Actuator Dynamics for Active Structural Control , 1990 .

[23]  A. P,et al.  Mechanical Vibrations , 1948, Nature.

[24]  K. Uchino,et al.  Piezoelectric Energy Harvesting under High Pre-Stressed Cyclic Vibrations , 2005 .

[25]  Sang-Gook Kim,et al.  DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .

[26]  S. Priya,et al.  Piezoelectric Windmill: A Novel Solution to Remote Sensing , 2004 .

[27]  D. Guyomar,et al.  Toward energy harvesting using active materials and conversion improvement by nonlinear processing , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[28]  L. E. Cross,et al.  Constitutive equations of symmetrical triple layer piezoelectric benders , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[29]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[30]  Francois Costa,et al.  Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system , 2004 .

[31]  Toshikazu Nishida,et al.  A MEMS acoustic energy harvester , 2006 .

[32]  D. Inman,et al.  Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries , 2005 .

[33]  M. Umeda,et al.  Energy Storage Characteristics of a Piezo-Generator using Impact Induced Vibration , 1997 .

[34]  Joseph R. Burns,et al.  The Energy Harvesting Eel: a small subsurface ocean/river power generator , 2001 .

[35]  D. Guyomar,et al.  Efficiency Enhancement of a Piezoelectric Energy Harvesting Device in Pulsed Operation by Synchronous Charge Inversion , 2005 .

[36]  D. Guyomar,et al.  Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction , 2005 .

[37]  Michael J. Ramsay,et al.  Piezoelectric energy harvesting for bio-MEMS applications , 2001 .

[38]  M. Umeda,et al.  Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator , 1996 .

[39]  D. Markley,et al.  Energy Harvesting Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment , 2004 .

[40]  S. Beeby,et al.  A novel thick-film piezoelectric micro-generator , 2001 .

[41]  William W. Clark,et al.  Piezoelectric Energy Harvesting with a Clamped Circular Plate: Analysis , 2005 .

[42]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[43]  Siak Piang Lim,et al.  Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications , 2004 .

[44]  George A. Lesieutre,et al.  Can a Coupling Coefficient of a Piezoelectric Device be Higher Than Those of Its Active Material? , 1997, Smart Structures.

[45]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[46]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[47]  Sang-Gook Kim,et al.  MEMS power generator with transverse mode thin film PZT , 2005 .

[48]  Shadrach Roundy,et al.  On the Effectiveness of Vibration-based Energy Harvesting , 2005 .

[49]  Daniel J. Inman,et al.  An experimental comparison between several active composite actuators for power generation , 2006 .

[50]  A. Smits,et al.  Energy harvesting eel , 2001 .

[51]  Alex Elvin,et al.  Feasibility of structural monitoring with vibration powered sensors , 2006 .