In this paper the connection is developed between the direct and indirect boundary-integral equation methods of linear elastostatics from both a physical and a mathematical viewpoint. It is shown that the indirect method in its various forms, like the direct method, can be derived from Somigliana's identity, and one particular indirect formulation is presented which reduces the mixed problem of elastostatics to a system of Cauchy singular integral equations.RésuméDans ce texte la relation est developpe entre la direct et l'indirect méthode d'équations intégrales de la frontiére de l'elasticite linear des deux points de vue mathematique et physique.Il est demonstre que la methode indirecte dans ses differents aspects resemble a la methode direct pouvant etre tire de l'identite de Somigliana. Et une formulation particuliere indirecte a ete presente. Elle reduit le problemes mixte de l'elasticite a un systeme d'equation d'integration singulier de Cauchy.
[1]
Vito Volterra,et al.
Sur l'équilibre des corps élastiques multiplement connexes
,
1907
.
[2]
Frank J. Rizzo,et al.
An integral equation approach to boundary value problems of classical elastostatics
,
1967
.
[3]
B. Das,et al.
Somigliana's method applied to plane problems of elastic half-spaces
,
1976
.
[4]
N. Louat.
Solution of Boundary Value Problems in Plane Strain
,
1962,
Nature.
[5]
J. D. Eshelby.
The elastic field of a crack extending non-uniformly under general anti-plane loading
,
1969
.
[6]
R. Lardner.
DISLOCATION LAYERS AND BOUNDARY-VALUE PROBLEMS OF PLANE ELASTICITY
,
1972
.