A single parameter to evaluate stress state in rail head for rolling contact fatigue analysis

Based on the Smith-Watson-Topper (SWT) method, a phenomenological approach for multiaxial fatigue analysis, the maximum SWT parameter is proposed as a single param- eter to evaluate the stress state in the rail head for assessing the fatigue integrity of the structure. A numerical procedure to calculate the maximum SWT parameter from a finite element analysis is presented and applied in a case study, where the stress and strain fields due to wheel/rail rolling contact are obtained from a three-dimensional finite element simulation with the steady-state transport analysis technique. The capability of the SWT method to predict fatigue crack initiation in the rail head is confirmed in the case study. Analogous to von Mises stress for strength analysis, the maximum SWT parameter can be applied to evaluate the fatigue loading state not only in rail head due to rolling contact fatigue but also in a generic structure subjected to a cyclic loading.

[1]  Soon-Bok Lee,et al.  A critical review on multiaxial fatigue assessments of metals , 1996 .

[2]  H. M. Tournay,et al.  The transition from the wear to the stress regime , 1996 .

[3]  U. Nackenhorst The ALE-formulation of bodies in rolling contact: Theoretical foundations and finite element approach , 2004 .

[4]  Xuesong Jin,et al.  Elastic-Plastic Finite Element Analysis of Nonsteady State Partial Slip Wheel-Rail Rolling Contact , 2005 .

[5]  Jonas W. Ringsberg,et al.  Life prediction of rolling contact fatigue crack initiation , 2001 .

[6]  W. M. Rainforth,et al.  The effect of microstructure and composition on the rolling contact fatigue behaviour of cast bainitic steels , 2007 .

[7]  S. Suresh Fatigue of materials , 1991 .

[8]  R. D. Fröhling,et al.  Wheel/rail interface management in heavy haul railway operations—applying science and technology , 2007 .

[9]  Uwe Zerbst,et al.  Fracture mechanics in railway applications––an overview , 2005 .

[10]  Darrell F. Socie,et al.  Multiaxial Fatigue Damage Models , 1987 .

[11]  Meiji Sato,et al.  Wear and rolling contact fatigue of rail steels , 1991 .

[12]  T. Farris,et al.  Mechanics of fretting fatigue crack formation , 1995 .

[13]  Seok-Jin Kwon,et al.  Numerical stress analysis and rolling contact fatigue of White Etching Layer on rail steel , 2011 .

[14]  P. J. Mutton,et al.  The effect of severe head wear on rolling contact fatigue in heavy haul operations , 2009 .

[15]  J Das,et al.  An evaluation of multiaxial fatigue life assessment methods for engineering components , 1999 .

[16]  J. Li,et al.  A modification of Smith–Watson–Topper damage parameter for fatigue life prediction under non‐proportional loading , 2012 .

[17]  Sean B. Leen,et al.  Finite element, critical-plane, fatigue life prediction of simple and complex contact configurations , 2005 .

[18]  Xuesong Jin,et al.  Three-dimensional elastic–plastic stress analysis of wheel–rail rolling contact , 2011 .

[19]  J. E. Garnham,et al.  Rolling contact fatigue of three pearlitic rail steels , 1996 .

[20]  Huseyin Sehitoglu,et al.  Three-dimensional elastic-plastic stress analysis of rolling contact , 2002 .

[21]  J. Cookson,et al.  The role of the environment in the rolling contact fatigue cracking of rails , 2011 .

[22]  Jun Ding,et al.  Study on bending fretting fatigue of LZ50 axle steel considering ratchetting by finite element method , 2013 .

[23]  A. Kapoor Wear by plastic ratchetting , 1997 .

[24]  L Li,et al.  A Study of a Numerical Analysis Method for the Wheel-Rail Wear of a Heavy-Haul Train , 2010 .

[25]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[26]  Reinhard Pippan,et al.  RCF and wear in theory and practice—The influence of rail grade on wear and RCF , 2011 .

[27]  S. Mall,et al.  Combined experimental–numerical investigation of fretting fatigue crack initiation , 2001 .

[28]  E. Charkaluk,et al.  Rolling contact fatigue of railways wheels: Influence of steel grade and sliding conditions , 2010 .

[29]  Yanyao Jiang,et al.  Elastic-Plastic Finite Element Analysis of Partial Slip Rolling Contact , 2002 .

[30]  E. Shur,et al.  Physical metallurgy aspects of rolling contact fatigue of rail steels , 2005 .

[31]  Xu Chen,et al.  A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading , 1999 .

[32]  Matija Fajdiga,et al.  Modelling the dependency of the Smith–Watson–Topper parameter on the cycles-to-failure using serial hybrid neural networks , 2012 .

[33]  David Nowell,et al.  The effect of rapidly varying contact stress fields on fretting fatigue , 2002 .