Constrained multisine input signals for plant-friendly identification of chemical process systems

This paper considers the use of constrained minimum crest factor multisine signals as inputs for plant-friendly identification testing of chemical process systems. The methodology presented here effectively integrates operating restrictions, information-theoretic requirements, and state-of-the-art optimization techniques to design minimum crest factor multisine signals meeting important user-specified time and frequency domain properties. A series of optimization problem formulations relevant to problems in linear, nonlinear, and multivariable system identification are presented; these culminate with their application to the modeling of the Weischedel–McAvoy high-purity distillation column problem, a demanding nonlinear and highly interactive system. The effectiveness of these signals for modeling for control purposes and the ability to incorporate a priori nonlinear models in the signal design procedure are demonstrated in this distillation system case study.

[1]  Thomas J. McAvoy,et al.  Feasibility of decoupling in conventionally controlled distillation columns. Reply to comments , 1982 .

[2]  Daniel E. Rivera,et al.  Control-relevant prefiltering: a systematic design approach and case study , 1992 .

[3]  J. Schoukens,et al.  Crest-factor minimization using nonlinear Chebyshev approximation methods , 1991 .

[4]  Manfred R. Schroeder,et al.  Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (Corresp.) , 1970, IEEE Trans. Inf. Theory.

[5]  I-Lung Chien,et al.  Nonlinear identification and control of a high-purity distillation column: a case study , 1995 .

[6]  F. J. Doyle,et al.  Plant-friendly identification of second-order Volterra models , 1999, 1999 European Control Conference (ECC).

[7]  David S. Bayard Statistical plant set estimation using Schroeder-phased multisinusoidal input design , 1993 .

[8]  John F. MacGregor,et al.  Identification for robust multivariable control: The design of experiments , 1994, Autom..

[9]  Hyunjin Lee,et al.  Optimization-based design of plant-friendly multisine signals using geometric discrepancy criteria , 2007, Comput. Optim. Appl..

[10]  Francis J. Doyle,et al.  The identification of nonlinear models for process control using tailored “plant-friendly” input sequences , 2001 .

[11]  Hyunjin Lee,et al.  "Plant-Friendly" system identification: a challenge for the process industries , 2003 .

[12]  Hyunjin Lee,et al.  CR-IDENT: A MATLAB TOOLBOX FOR MULTIVARIABLE CONTROL-RELEVANT SYSTEM IDENTIFICATION , 2006 .

[13]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[14]  Mohamed Azlan Hussain,et al.  Review of the applications of neural networks in chemical process control - simulation and online implementation , 1999, Artif. Intell. Eng..

[15]  Jan Vlcek,et al.  Interior point methods for large-scale nonlinear programming , 2005, Optim. Methods Softw..

[16]  Lorenz T. Biegler,et al.  Failure of global convergence for a class of interior point methods for nonlinear programming , 2000, Math. Program..

[17]  Håkan Hjalmarsson,et al.  From experiments to closed loop control , 2003 .

[18]  Hyunjin Lee,et al.  High-Purity Distillation , 2007, IEEE Control Systems.

[19]  Yucai Zhu,et al.  Multivariable System Identification For Process Control , 2001 .

[20]  Keith R. Godfrey,et al.  Comparison of perturbation signals for linear system identification in the frequency domain , 1999 .

[21]  Hyunjin Lee,et al.  An integrated input signal design and control-relevant parameter estimation approach for highly interactive multivariate systems , 2006, 2006 American Control Conference.

[22]  Daniel E. Rivera,et al.  A 'Model-on-Demand' identification methodology for non-linear process systems , 2001 .

[23]  Thomas E Marlin,et al.  Process Control , 1995 .

[24]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[25]  Raghunathan Rengaswamy,et al.  Multi-objective input signal design for plant-friendly identification , 2003 .

[26]  M. Morari,et al.  LV-Control of a high-purity distillation column , 1987 .

[27]  W. Luyben,et al.  Control of high-purity distillation columns , 1983 .

[28]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[29]  W Li,et al.  Frequency‐domain closed‐loop identification of multivariable systems for feedback control , 1996 .

[30]  Sigurd Skogestad,et al.  Inconsistencies in Dynamic Models for Ill-Conditioned Plants: Application to Low-Order Models of Distillation Columns , 1994 .

[31]  Hyunjin Lee A PLANT-FRIENDLY MULTIVARIABLE SYSTEM IDENTIFICATION FRA MEWORK BASED ON IDENTIFICATION TEST MONITORING , 2006 .

[32]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[33]  Daniel E. Rivera,et al.  Application of minimum crest factor multisinusoidal signals for "plant-friendly" identification of nonlinear process systems , 2000 .

[34]  Yucai Zhu,et al.  Simple control-relevant identification test methods for a class of ill-conditioned processes , 2006 .

[35]  Keith R. Godfrey,et al.  Perturbation signals for system identification , 1993 .

[36]  Anders Stenman,et al.  Model on Demand: Algorithms, Analysis and Applications , 1999 .