Toward Printed Integrated Circuits based on Unipolar or Ambipolar Polymer Semiconductors

For at least the past ten years printed electronics has promised to revolutionize our daily life by making cost-effective electronic circuits and sensors available through mass production techniques, for their ubiquitous applications in wearable components, rollable and conformable devices, and point-of-care applications. While passive components, such as conductors, resistors and capacitors, had already been fabricated by printing techniques at industrial scale, printing processes have been struggling to meet the requirements for mass-produced electronics and optoelectronics applications despite their great potential. In the case of logic integrated circuits (ICs), which constitute the focus of this Progress Report, the main limitations have been represented by the need of suitable functional inks, mainly high-mobility printable semiconductors and low sintering temperature conducting inks, and evoluted printing tools capable of higher resolution, registration and uniformity than needed in the conventional graphic arts printing sector. Solution-processable polymeric semiconductors are the best candidates to fulfill the requirements for printed logic ICs on flexible substrates, due to their superior processability, ease of tuning of their rheology parameters, and mechanical properties. One of the strongest limitations has been mainly represented by the low charge carrier mobility (μ) achievable with polymeric, organic field-effect transistors (OFETs). However, recently unprecedented values of μ ∼ 10 cm(2) /Vs have been achieved with solution-processed polymer based OFETs, a value competing with mobilities reported in organic single-crystals and exceeding the performances enabled by amorphous silicon (a-Si). Interestingly these values were achieved thanks to the design and synthesis of donor-acceptor copolymers, showing limited degree of order when processed in thin films and therefore fostering further studies on the reason leading to such improved charge transport properties. Among this class of materials, various polymers can show well balanced electrons and holes mobility, therefore being indicated as ambipolar semiconductors, good environmental stability, and a small band-gap, which simplifies the tuning of charge injection. This opened up the possibility of taking advantage of the superior performances offered by complementary "CMOS-like" logic for the design of digital ICs, easing the scaling down of critical geometrical features, and achieving higher complexity from robust single gates (e.g., inverters) and test circuits (e.g., ring oscillators) to more complete circuits. Here, we review the recent progress in the development of printed ICs based on polymeric semiconductors suitable for large-volume micro- and nano-electronics applications. Particular attention is paid to the strategies proposed in the literature to design and synthesize high mobility polymers and to develop suitable printing tools and techniques to allow for improved patterning capability required for the down-scaling of devices in order to achieve the operation frequencies needed for applications, such as flexible radio-frequency identification (RFID) tags, near-field communication (NFC) devices, ambient electronics, and portable flexible displays.

[1]  Feng Yan,et al.  Solution Processable Low‐Voltage Organic Thin Film Transistors with High‐k Relaxor Ferroelectric Polymer as Gate Insulator , 2012, Advanced materials.

[2]  W. Hu,et al.  Interface engineering for high-performance organic field-effect transistors. , 2012, Physical chemistry chemical physics : PCCP.

[3]  Kanti Jain,et al.  Flexible Electronics and Displays: High-Resolution, Roll-to-Roll, Projection Lithography and Photoablation Processing Technologies for High-Throughput Production , 2005, Proceedings of the IEEE.

[4]  P. Chakrabarti,et al.  Poly-3-hexylthiophene based organic field-effect transistor: Detection of low concentration of ammonia , 2012 .

[5]  Gui Yu,et al.  A stable solution-processed polymer semiconductor with record high-mobility for printed transistors , 2012, Scientific Reports.

[6]  T. Someya,et al.  Organic Pseudo-CMOS Circuits for Low-Voltage Large-Gain High-Speed Operation , 2011, IEEE Electron Device Letters.

[7]  H. Klauk,et al.  Ultralow-power organic complementary circuits , 2007, Nature.

[8]  K. Kajiwara,et al.  Light‐Emitting Field‐Effect Transistors Consisting of Bilayer‐Crystal Organic Semiconductors , 2011 .

[9]  Yong‐Young Noh,et al.  Electron injection enhancement by a Cs-salt interlayer in ambipolar organic field-effect transistors and complementary circuits , 2012 .

[10]  P. Sonar,et al.  A furan-containing conjugated polymer for high mobility ambipolar organic thin film transistors. , 2012, Chemical communications.

[11]  Peter Andersson,et al.  The Origin of the High Conductivity of Poly(3,4-ethylenedioxythiophene)−Poly(styrenesulfonate) (PEDOT−PSS) Plastic Electrodes , 2006 .

[12]  Alessandro Troisi,et al.  Charge transport in high mobility molecular semiconductors: classical models and new theories. , 2011, Chemical Society reviews.

[13]  Ute Zschieschang,et al.  Flexible Organic Circuits with Printed Gate Electrodes , 2003 .

[14]  Henning Sirringhaus,et al.  Efficient charge injection from a high work function metal in high mobility n-type polymer field-effect transistors , 2010 .

[15]  Juhwan Kim,et al.  Controlled charge transport by polymer blend dielectrics in top-gate organic field-effect transistors for low-voltage-operating complementary circuits. , 2012, ACS applied materials & interfaces.

[16]  Michael S. Shur,et al.  An experimental study of contact effects in organic thin film transistors , 2006 .

[17]  Jean M. J. Fréchet,et al.  Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight , 2005 .

[18]  Richard H. Friend,et al.  Inkjet Printed Via‐Hole Interconnections and Resistors for All‐Polymer Transistor Circuits , 2001 .

[19]  John A. Rogers,et al.  Three-Dimensional and Multilayer Nanostructures Formed by Nanotransfer Printing , 2003 .

[20]  Henning Sirringhaus,et al.  Device Physics of Solution‐Processed Organic Field‐Effect Transistors , 2005 .

[21]  Wolfgang Clemens,et al.  Fully printed integrated circuits from solution processable polymers , 2004 .

[22]  G. Wegner,et al.  Effect of Molecular Weight on the Structure and Crystallinity of Poly(3-hexylthiophene) , 2006 .

[23]  Paul H. Wöbkenberg,et al.  Fluorine containing C60 derivatives for high-performance electron transporting field-effect transistors and integrated circuits , 2008 .

[24]  K. Müllen,et al.  Rational Optimization of Benzo[2,1‐b;3,4‐b′]dithiophene‐Containing Polymers for Organic Field‐Effect Transistors , 2010, Advanced materials.

[25]  William Aspray,et al.  The Intel 4004 Microprocessor: What Constituted Invention? , 1997, IEEE Ann. Hist. Comput..

[26]  A. Facchetti,et al.  Solution-deposited organic-inorganic hybrid multilayer gate dielectrics. Design, synthesis, microstructures, and electrical properties with thin-film transistors. , 2011, Journal of the American Chemical Society.

[27]  Yong-Young Noh,et al.  Downscaling of Organic Field‐Effect Transistors with a Polyelectrolyte Gate Insulator , 2008 .

[28]  H. Sirringhaus,et al.  Conjugated‐Polymer‐Based Lateral Heterostructures Defined by High‐Resolution Photolithography , 2010 .

[29]  Gerwin H. Gelinck,et al.  High-performance all-polymer integrated circuits , 2000 .

[30]  H. Katz Recent Advances in Semiconductor Performance and Printing Processes for Organic Transistor-Based Electronics , 2004 .

[31]  Juhwan Kim,et al.  Low-voltage, high speed inkjet-printed flexible complementary polymer electronic circuits , 2013 .

[32]  Yong-Young Noh,et al.  Frequency operation of low-voltage, solution-processed organic field-effect transistors , 2011 .

[33]  Do Hwan Kim,et al.  Effect of side chain length on molecular ordering and field-effect mobility in poly(3-alkylthiophene) transistors , 2006 .

[34]  Tobin J Marks,et al.  Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics. , 2005, Journal of the American Chemical Society.

[35]  P. Sonar,et al.  A Low‐Bandgap Diketopyrrolopyrrole‐Benzothiadiazole‐Based Copolymer for High‐Mobility Ambipolar Organic Thin‐Film Transistors , 2010, Advanced materials.

[36]  Jin Jang,et al.  Ring oscillator made of organic thin-film transistors produced by self-organized process on plastic substrate , 2006 .

[37]  Sunho Jeong,et al.  Organic thin film transistors with ink-jet printed metal nanoparticle electrodes of a reduced channel length by laser ablation , 2007 .

[38]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[39]  Y. Arakawa,et al.  Low-voltage-operating organic complementary circuits based on pentacene and C60 transistors , 2009 .

[40]  S. Rasmussen,et al.  A simple and efficient route to N-functionalized dithieno[3,2-b:2',3'-d]pyrroles: fused-ring building blocks for new conjugated polymeric systems. , 2003, The Journal of organic chemistry.

[41]  Yong-Young Noh,et al.  High speeds complementary integrated circuits fabricated with all‐printed polymeric semiconductors , 2011 .

[42]  P. Sonar,et al.  Furan containing diketopyrrolopyrrole copolymers : synthesis, characterization, organic field effect transistor performance and photovoltaic properties , 2012 .

[43]  Ute Zschieschang,et al.  Pentacene organic transistors and ring oscillators on glass and on flexible polymeric substrates , 2003 .

[44]  Kris Myny,et al.  Dual‐Gate Thin‐Film Transistors, Integrated Circuits and Sensors , 2011, Advanced materials.

[45]  Bo Li,et al.  Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. , 2006, Journal of the American Chemical Society.

[46]  Alberto Salleo,et al.  Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. , 2010, Journal of the American Chemical Society.

[47]  Tobin J. Marks,et al.  σ-π molecular dielectric multilayers for low-voltage organic thin-film transistors , 2005 .

[48]  Kevin C. See,et al.  Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. , 2009, Nature materials.

[49]  J. Hummelen,et al.  Solution processible organic transistors and circuits based on a C-70 methanofullerene , 2005 .

[50]  M. Baumgarten,et al.  Thiadiazoloquinoxaline-acetylene containing polymers as semiconductors in ambipolar field effect transistors. , 2011, Journal of the American Chemical Society.

[51]  Mario Caironi,et al.  Quantum-chemical insights into the prediction of charge transport parameters for a naphthalenetetracarboxydiimide-based copolymer with enhanced electron mobility. , 2011, Journal of the American Chemical Society.

[52]  Ullrich Scherf,et al.  Organic semiconductors for solution-processable field-effect transistors (OFETs). , 2008, Angewandte Chemie.

[53]  H. Sirringhaus Reliability of Organic Field‐Effect Transistors , 2009 .

[54]  B. Stadlober,et al.  Submicron pentacene-based organic thin film transistors on flexible substrates , 2007 .

[55]  Helmut Sitter,et al.  High performance n-channel organic field-effect transistors and ring oscillators based on C60 fullerene films , 2006 .

[56]  Tobin J. Marks,et al.  Gate Dielectrics for Organic Field‐Effect Transistors: New Opportunities for Organic Electronics , 2005 .

[57]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[58]  A. Ferrari,et al.  Inkjet-printed graphene electronics. , 2011, ACS nano.

[59]  John A Rogers,et al.  High-resolution electrohydrodynamic jet printing. , 2007, Nature materials.

[60]  F. Krebs,et al.  Roll‐to‐Roll fabrication of large area functional organic materials , 2013 .

[61]  P. Lee,et al.  Remarks on giant conductivity in TTF-TCNQ , 1973 .

[62]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[63]  Janos Veres,et al.  Gate Insulators in Organic Field-Effect Transistors , 2004 .

[64]  Wim Dehaene,et al.  Complementary integrated circuits on plastic foil using inkjet printed n- and p-type organic semiconductors: Fabrication, characterization, and circuit analysis , 2012 .

[65]  Eveliina Koski,et al.  Inkjet-printed passive UHF RFID tags: review and performance evaluation , 2012 .

[66]  D. Knipp,et al.  Contact effects in organic thin film transistors with printed electrodes , 2008 .

[67]  Kazuhito Tsukagoshi,et al.  Current transport in short channel top-contact pentacene field-effect transistors investigated with the selective molecular doping technique , 2007 .

[68]  Yong‐Young Noh,et al.  High mobility top-gated poly(3-hexylthiophene) field-effect transistors with high work-function Pt electrodes , 2010 .

[69]  A. Yee,et al.  Reversal imprinting by transferring polymer from mold to substrate , 2002 .

[70]  Lei Zhang,et al.  All‐Solution‐Processed, High‐Performance n‐Channel Organic Transistors and Circuits: Toward Low‐Cost Ambient Electronics , 2011, Advanced materials.

[71]  John E. Anthony,et al.  High-performance organic integrated circuits based on solution processable polymer-small molecule blends , 2008 .

[72]  H. Klauk,et al.  1,4-bis(5-decyl-2,2′-bithien-5-yl)benzene as new stable organic semiconductor for high performance thin film transistors , 2005 .

[73]  M. Baldo,et al.  Dry Lithography of Large-Area, Thin-Film Organic Semiconductors Using Frozen CO2 Resists , 2012, Advanced materials.

[74]  X. Crispin,et al.  Fiber‐Embedded Electrolyte‐Gated Field‐Effect Transistors for e‐Textiles , 2009, Advanced materials.

[75]  A. Heeger,et al.  High‐Performance Ambipolar Transistors and Inverters from an Ultralow Bandgap Polymer , 2012, Advanced materials.

[76]  Barbara Stadlober,et al.  High-performing submicron organic thin-film transistors fabricated by residue-free embossing , 2010 .

[77]  M. Caironi,et al.  Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits. , 2011, ACS Applied Materials and Interfaces.

[78]  Magnus Berggren,et al.  Low‐Voltage Ring Oscillators Based on Polyelectrolyte‐Gated Polymer Thin‐Film Transistors , 2010, Advanced materials.

[79]  Aram Amassian,et al.  Tetrathienoacene copolymers as high mobility, soluble organic semiconductors. , 2008, Journal of the American Chemical Society.

[80]  Maxim Shkunov,et al.  Stable polythiophene semiconductors incorporating thieno[2,3-b]thiophene. , 2005, Journal of the American Chemical Society.

[81]  Barbara Stadlober,et al.  Orders‐of‐Magnitude Reduction of the Contact Resistance in Short‐Channel Hot Embossed Organic Thin Film Transistors by Oxidative Treatment of Au‐Electrodes , 2007 .

[82]  H. Sirringhaus,et al.  Polaron Localization at Interfaces in High‐Mobility Microcrystalline Conjugated Polymers , 2009 .

[83]  Liang Zhang,et al.  Performance enhancement of organic thin-film transistors using WO3-modified drain/source electrodes , 2009 .

[84]  Mario Caironi,et al.  Charge Injection in Solution‐Processed Organic Field‐Effect Transistors: Physics, Models and Characterization Methods , 2012, Advanced materials.

[85]  H. Sirringhaus,et al.  Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. , 2011, Nature materials.

[86]  R. Sarpeshkar,et al.  Large-scale complementary integrated circuits based on organic transistors , 2000, Nature.

[87]  Markus Hösel,et al.  Roll-to-roll fabrication of polymer solar cells , 2012 .

[88]  Arne Hoppe,et al.  Megahertz operation of organic field-effect transistors based on poly(3-hexylthiopene) , 2006 .

[89]  Do Hwan Kim,et al.  Controlled one-dimensional nanostructures in poly(3-hexylthiophene) thin film for high-performance organic field-effect transistors. , 2006, The journal of physical chemistry. B.

[90]  W. Fix,et al.  Fast polymer integrated circuits , 2002 .

[91]  Yong-Young Noh,et al.  Low-voltage-operated top-gate polymer thin-film transistors with high capacitance poly(vinylidene fluoride-trifluoroethylene)/poly(methyl methacrylate) dielectrics , 2010 .

[92]  Janos Veres,et al.  Low‐k Insulators as the Choice of Dielectrics in Organic Field‐Effect Transistors , 2003 .

[93]  Henning Sirringhaus,et al.  High yield, single droplet electrode arrays for nanoscale printed electronics. , 2010, ACS nano.

[94]  Y. Nishi,et al.  Controlling electric dipoles in nanodielectrics and its applications for enabling air-stable n-channel organic transistors. , 2011, Nano letters.

[95]  Jurriaan Huskens,et al.  Fabrication of Transistors on Flexible Substrates: from Mass‐Printing to High‐Resolution Alternative Lithography Strategies , 2012, Advanced materials.

[96]  H. Sirringhaus,et al.  High Mobility Ambipolar Charge Transport in Polyselenophene Conjugated Polymers , 2010, Advanced materials.

[97]  Takao Someya,et al.  Contact doping and ultrathin gate dielectrics for nanoscale organic thin-film transistors. , 2011, Small.

[98]  Eugenio Cantatore,et al.  Air‐Stable Complementary‐like Circuits Based on Organic Ambipolar Transistors , 2006 .

[99]  Christophe Serbutoviez,et al.  Influence of substrate surface chemistry on the performance of top-gate organic thin-film transistors. , 2011, Journal of the American Chemical Society.

[100]  P. Sonar,et al.  Annealing-free high-mobility diketopyrrolopyrrole-quaterthiophene copolymer for solution-processed organic thin film transistors. , 2011, Journal of the American Chemical Society.

[101]  C. Frisbie,et al.  Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density. , 2007, Journal of the American Chemical Society.

[102]  Antonio Facchetti,et al.  Solution Processed Top‐Gate n‐Channel Transistors and Complementary Circuits on Plastics Operating in Ambient Conditions , 2008 .

[103]  L. Guo,et al.  High‐Speed Roll‐to‐Roll Nanoimprint Lithography on Flexible Plastic Substrates , 2008 .

[104]  H. Sirringhaus,et al.  Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. , 2011, Journal of the American Chemical Society.

[105]  Antonio Facchetti,et al.  π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications† , 2011 .

[106]  Tobin J Marks,et al.  Printable cross-linked polymer blend dielectrics. Design strategies, synthesis, microstructures, and electrical properties, with organic field-effect transistors as testbeds. , 2008, Journal of the American Chemical Society.

[107]  Tobin J. Marks,et al.  High‐Performance Solution‐Deposited n‐Channel Organic Transistors and their Complementary Circuits , 2007 .

[108]  Shinuk Cho,et al.  Relationship between the microscopic morphology and the charge transport properties in poly(3-hexylthiophene) field-effect transistors , 2006 .

[109]  P. Sonar,et al.  3,6-Di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione and bithiophene copolymer with rather disordered chain orientation showing high mobility in organic thin film transistors , 2011 .

[110]  Costas P. Grigoropoulos,et al.  Lithography-free high-resolution organic transistor arrays on polymer substrate by low energy selective laser ablation of inkjet-printed nanoparticle film , 2008 .

[111]  Donal D. C. Bradley,et al.  Polymer Field‐Effect Transistors Fabricated by the Sequential Gravure Printing of Polythiophene, Two Insulator Layers, and a Metal Ink Gate , 2010 .

[112]  A. Song,et al.  Influence of processing conditions on the stability of poly(3-hexylthiophene)-based field-effect transistors , 2006 .

[113]  Smith,et al.  Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. , 1996, Physical review. B, Condensed matter.

[114]  T. Kowalewski,et al.  Transistor Paint: High Mobilities in Small Bandgap Polymer Semiconductor Based on the Strong Acceptor, Diketopyrrolopyrrole and Strong Donor, Dithienopyrrole , 2010, Advanced materials.

[115]  Yong-Young Noh,et al.  Ultra-thin polymer gate dielectrics for top-gate polymer field-effect transistors , 2009 .

[116]  George G. Malliaras,et al.  Hydrofluoroethers as Orthogonal Solvents for the Chemical Processing of Organic Electronic Materials , 2008 .

[117]  Stephen Y. Chou,et al.  Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography , 2002 .

[118]  S. P. Tiwari,et al.  Study of electrical performance and stability of solution-processed n-channel organic field-effect transistors , 2009 .

[119]  Eugenio Cantatore,et al.  Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors , 2004 .

[120]  B. Ong,et al.  Poly(3,3‴-didodecylquarterthiophene) field effect transistors with single-walled carbon nanotube based source and drain electrodes , 2007 .

[121]  Prashant Sonar,et al.  A High Mobility P‐Type DPP‐Thieno[3,2‐b]thiophene Copolymer for Organic Thin‐Film Transistors , 2010, Advanced materials.

[122]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[123]  Ute Zschieschang,et al.  Low-voltage organic thin-film transistors with large transconductance , 2007 .

[124]  John R. Reynolds,et al.  A spray-processable, low bandgap, and ambipolar donor-acceptor conjugated polymer. , 2009, Journal of the American Chemical Society.

[125]  Jiyoul Lee,et al.  Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. , 2008, Nature materials.

[126]  Michael A. Haase,et al.  Pentacene-based radio-frequency identification circuitry , 2003 .

[127]  Jain Kanti,et al.  フレキシブルエレクトロニクスと表示装置:高スループット生産のための高分解能ロール・トー・ロール投影リソグラフィーおよび光アブレーション処理技術 , 2005 .

[128]  A. Heeger,et al.  Ambipolarity in Benzobisthiadiazole‐Based Donor–Acceptor Conjugated Polymers , 2011, Advanced materials.

[129]  Hagen Klauk,et al.  Carbon‐Based Field‐Effect Transistors for Nanoelectronics , 2009, Advanced materials.

[130]  L. Guo,et al.  Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. , 2009, ACS nano.

[131]  Seth R. Marder,et al.  n‐Type Organic Semiconductors in Organic Electronics , 2010, Advanced materials.

[132]  T. Someya,et al.  A 4 V Operation, Flexible Braille Display Using Organic Transistors, Carbon Nanotube Actuators, and Organic Static Random‐Access Memory , 2011 .

[133]  Richard H. Friend,et al.  Lithography‐Free, Self‐Aligned Inkjet Printing with Sub‐Hundred‐Nanometer Resolution , 2005 .

[134]  R. Wallace,et al.  Effect of poly (3-hexylthiophene) film thickness on organic thin film transistor properties , 2006 .

[135]  A. Facchetti,et al.  Dithienocoronenediimide‐Based Copolymers as Novel Ambipolar Semiconductors for Organic Thin‐Film Transistors , 2012, Advanced materials.

[136]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.

[137]  Toshihide Kamata,et al.  Influence of moisture on device characteristics of polythiophene-based field-effect transistors , 2004 .

[138]  J. Hauser Noise margin criteria for digital logic circuits , 1993 .

[139]  Yasuhiko Arakawa,et al.  High-Frequency Organic Complementary Ring Oscillator Operating up to 200 kHz , 2011 .

[140]  Zhenan Bao,et al.  Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. , 2011, Journal of the American Chemical Society.

[141]  Itaru Osaka,et al.  Advances in molecular design and synthesis of regioregular polythiophenes. , 2008, Accounts of chemical research.

[142]  Tobin J. Marks,et al.  High-mobility bottom-contact n-channel organic transistors and their use in complementary ring oscillators , 2006 .

[143]  R. J. Kline,et al.  Molecular packing of high-mobility diketo pyrrolo-pyrrole polymer semiconductors with branched alkyl side chains. , 2011, Journal of the American Chemical Society.

[144]  Jiri Janata,et al.  Organic semiconductors in potentiometric gas sensors , 2008 .

[145]  H. Sirringhaus,et al.  A Selenophene‐Based Low‐Bandgap Donor–Acceptor Polymer Leading to Fast Ambipolar Logic , 2012, Advanced materials.

[146]  Wolfgang Kowalsky,et al.  Large Area Electronics Using Printing Methods , 2005, Proceedings of the IEEE.

[147]  T. Shimoda,et al.  Control of carrier density by self-assembled monolayers in organic field-effect transistors , 2004, Nature materials.

[148]  Sung Kyu Park,et al.  Solution-Processed TIPS-Pentacene Organic Thin-Film-Transistor Circuits , 2007, IEEE Electron Device Letters.

[149]  H. Lifka,et al.  53.4: Ultra‐Thin Flexible OLED Device , 2007 .

[150]  J. Rogers,et al.  Stretchable graphene transistors with printed dielectrics and gate electrodes. , 2011, Nano letters.

[151]  H. Sirringhaus,et al.  Ink‐Jet Printing of Downscaled Organic Electronic Devices , 2012 .

[152]  M. Kanatzidis,et al.  Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. , 2011, Nature materials.

[153]  Elsa Reichmanis,et al.  Ring oscillator fabricated completely by means of mass-printing technologies , 2007 .

[154]  Simone Fabiano,et al.  Asymmetric electron and hole transport in a high-mobility n-type conjugated polymer , 2012 .

[155]  Jian Tang,et al.  Recent progress in the design of narrow bandgap conjugated polymers for high-efficiency organic solar cells , 2012 .

[156]  H. Sirringhaus,et al.  Organic integrated complementary inverters with ink-jet printed source/drain electrodes and sub-micron channels , 2012 .

[157]  J.S. Kilby,et al.  Invention of the integrated circuit , 1976, IEEE Transactions on Electron Devices.

[158]  Tobin J Marks,et al.  High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. , 2010, Chemical reviews.

[159]  Yong-Young Noh,et al.  Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films , 2012, Nature.

[160]  Ute Zschieschang,et al.  Low-voltage organic transistors with an amorphous molecular gate dielectric , 2004, Nature.

[161]  Seung Hwan Ko,et al.  Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles , 2011, Advanced materials.

[162]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[163]  I. Park,et al.  Templated assembly of metal nanoparticles in nanoimprinted patterns for metal nanowire fabrication , 2009, Nanotechnology.

[164]  Barbara Stadlober,et al.  Fabrication of n‐ and p‐Type Organic Thin Film Transistors with Minimized Gate Overlaps by Self‐Aligned Nanoimprinting , 2010, Advanced materials.

[165]  Ping Liu,et al.  High-performance semiconducting polythiophenes for organic thin-film transistors. , 2004, Journal of the American Chemical Society.

[166]  Donghoon Choi,et al.  2,5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione-based donor-acceptor alternating copolymer bearing 5,5'-di(thiophen-2-yl)-2,2'-biselenophene exhibiting 1.5 cm2·V(-1)·s(-1) hole mobility in thin-film transistors. , 2011, Journal of the American Chemical Society.

[167]  Christophe Serbutoviez,et al.  Modification of gold source and drain electrodes by self-assembled monolayer in staggered n- and p-channel organic thin film transistors , 2010 .

[168]  Ute Zschieschang,et al.  Organic electronics on paper , 2004 .

[169]  Etienne Goovaerts,et al.  Low Band Gap Donor-Acceptor Conjugated Polymers toward Organic Solar Cells Applications , 2007 .

[170]  K. Müllen,et al.  Graphene as Transparent Electrode Material for Organic Electronics , 2011, Advanced materials.

[171]  Matthew J. Panzer,et al.  Exploiting Ionic Coupling in Electronic Devices: Electrolyte‐Gated Organic Field‐Effect Transistors , 2008 .

[172]  Takao Someya,et al.  Contact resistance and megahertz operation of aggressively scaled organic transistors. , 2012, Small.

[173]  Yong-Young Noh,et al.  Remarkable Enhancement of Hole Transport in Top‐Gated N‐Type Polymer Field‐Effect Transistors by a High‐k Dielectric for Ambipolar Electronic Circuits , 2012, Advanced materials.

[174]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[175]  P. Sonar,et al.  Characteristics of High-Performance Ambipolar Organic Field-Effect Transistors Based on a Diketopyrrolopyrrole-Benzothiadiazole Copolymer , 2012, IEEE Transactions on Electron Devices.

[176]  U. Zschieschang,et al.  Flexible organic complementary circuits , 2005, IEEE Transactions on Electron Devices.

[177]  Sung Kyu Park,et al.  Polymeric Substrate Spin-Cast diF-TESADT OTFT Circuits , 2008, IEEE Electron Device Letters.

[178]  Jaeyoung Kim,et al.  All-Printed and Roll-to-Roll-Printable 13.56-MHz-Operated 1-bit RF Tag on Plastic Foils , 2010, IEEE Transactions on Electron Devices.

[179]  B. Batlogg,et al.  Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator , 2004 .

[180]  R. Friend,et al.  Dielectric switching of the nature of excited singlet state in a donor-acceptor-type polyfluorene copolymer , 2010 .

[181]  Yong‐Young Noh,et al.  Flexible Complementary Logic Gates Using Inkjet-Printed Polymer Field-Effect Transistors , 2013, IEEE Electron Device Letters.

[182]  Yong‐Young Noh,et al.  A New Poly(thienylenevinylene) Derivative with High Mobility and Oxidative Stability for Organic Thin‐Film Transistors and Solar Cells , 2009 .

[183]  Donal D. C. Bradley,et al.  Gravure printing inverted organic solar cells: The influence of ink properties on film quality and device performance , 2012 .

[184]  Kah-Yoong Chan,et al.  Designing organic and inorganic ambipolar thin-film transistors and inverters: Theory and experiment , 2012 .

[185]  Jun H. Souk,et al.  A practical approach to processing flexible displays , 2010 .

[186]  P. Blom,et al.  Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics , 2005, Nature materials.

[187]  Henning Sirringhaus,et al.  Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents , 2004 .

[188]  M. Muccini A bright future for organic field-effect transistors , 2006, Nature materials.

[189]  Robert Graf,et al.  Ultrahigh mobility in polymer field-effect transistors by design. , 2011, Journal of the American Chemical Society.

[190]  R. J. Kline,et al.  High Carrier Mobility Polythiophene Thin Films: Structure Determination by Experiment and Theory† , 2007 .

[191]  Yong‐Young Noh,et al.  Spray-printed organic field-effect transistors and complementary inverters , 2013 .

[192]  Mark A Ratner,et al.  Vapor phase self-assembly of molecular gate dielectrics for thin film transistors. , 2008, Journal of the American Chemical Society.

[193]  K. Tsukagoshi,et al.  Optimal Structure for High‐Performance and Low‐Contact‐Resistance Organic Field‐Effect Transistors Using Contact‐Doped Coplanar and Pseudo‐Staggered Device Architectures , 2012 .

[194]  Henning Sirringhaus,et al.  Analysis of the contact resistance in staggered, top-gate organic field-effect transistors , 2007 .

[195]  Byeong Kwon Ju,et al.  Organic Thin-Film Transistors with Short Channel Length Fabricated by Reverse Offset Printing , 2011 .

[196]  Yong‐Young Noh,et al.  Bithiophene-imide-based polymeric semiconductors for field-effect transistors: synthesis, structure-property correlations, charge carrier polarity, and device stability. , 2011, Journal of the American Chemical Society.

[197]  Yong-Young Noh,et al.  Downscaling of self-aligned, all-printed polymer thin-film transistors. , 2007, Nature nanotechnology.

[198]  Tobin J Marks,et al.  Flexible low-voltage organic thin-film transistors enabled by low-temperature, ambient solution-processable inorganic/organic hybrid gate dielectrics. , 2010, Journal of the American Chemical Society.

[199]  S. Naka,et al.  Organic Field-Effect Transistor Integrated Circuits using Self-Alignment Process Technology , 2007 .

[200]  Suresh Chand,et al.  Recent progress and future aspects of organic solar cells , 2012 .

[201]  Changduk Yang,et al.  Solution-processable ambipolar diketopyrrolopyrrole-selenophene polymer with unprecedentedly high hole and electron mobilities. , 2012, Journal of the American Chemical Society.

[202]  S. Jenekhe,et al.  High‐mobility Ambipolar Transistors and High‐gain Inverters from a Donor–Acceptor Copolymer Semiconductor , 2010, Advanced materials.

[203]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[204]  Daniel R. Gamota,et al.  Fully printed silicon field effect transistors , 2009 .

[205]  Se Hyun Kim,et al.  Multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) composite films for transistor and inverter devices. , 2011, ACS applied materials & interfaces.

[206]  Magnus Berggren,et al.  Polyelectrolyte‐Gated Organic Complementary Circuits Operating at Low Power and Voltage , 2011, Advanced materials.

[207]  Eugenio Cantatore,et al.  Fast ambipolar integrated circuits with poly(diketopyrrolopyrrole- terthiophene) , 2011 .

[208]  Kris Myny,et al.  Pentacene devices and logic gates fabricated by organic vapor phase deposition , 2006 .

[209]  Yong‐Young Noh,et al.  A conjugated polyazine containing diketopyrrolopyrrole for ambipolar organic thin film transistors. , 2012, Chemical communications.

[210]  Kang L. Wang,et al.  Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. , 2011, Nano letters.

[211]  P. Heremans,et al.  Noise-Margin Analysis for Organic Thin-Film Complementary Technology , 2010, IEEE Transactions on Electron Devices.

[212]  H. Sirringhaus,et al.  Downscaling of n-channel organic field-effect transistors with inkjet-printed electrodes , 2012 .

[213]  Hagen Klauk,et al.  Organic thin-film transistors. , 2010, Chemical Society reviews.

[214]  Henning Sirringhaus,et al.  High‐Performance Ambipolar Diketopyrrolopyrrole‐Thieno[3,2‐b]thiophene Copolymer Field‐Effect Transistors with Balanced Hole and Electron Mobilities , 2012, Advanced materials.