IκBβ enhances the generation of the low-affinity NFκB/RelA homodimer

The NFκB family of dimeric transcription factors regulate inflammatory and immune responses. While the dynamic control of NFκB dimer activity via the IκB-NFκB signaling module is well understood, there is little information on how specific dimer repertoires are generated from Rel family polypeptides. Here we report the iterative construction – guided by in vitro and in vivo experimentation – of a mathematical model of the Rel-NFκB generation module. Our study reveals that IκBβ has essential functions within the Rel-NFκB generation module, specifically for the RelA:RelA homodimer, which controls a subset of NFκB target genes. Our findings revise the current dogma of the three classical, functionally-related IκB proteins by distinguishing between a positive ‘licensing’ factor (IκBβ) that contributes to determining the available NFκB dimer repertoire in a cell’s steady state, and negative feedback regulators (IκBα and -ε) that determine the duration and dynamics of the cellular response to an inflammatory stimulus.

[1]  Alexander Hoffmann,et al.  Kinetic control of negative feedback regulators of NF-κB/RelA determines their pathogen- and cytokine-receptor signaling specificity , 2009, Proceedings of the National Academy of Sciences.

[2]  A. Hoffmann,et al.  Immortalized fibroblasts from NF-κB RelA knockout mice show phenotypic heterogeneity and maintain increased sensitivity to tumor necrosis factor α after transformation by v-Ras , 2005, Oncogene.

[3]  Hossein Salimi-Moosavi,et al.  Rapid affinity measurement of protein-protein interactions in a microfluidic platform. , 2012, Analytical biochemistry.

[4]  A. Hoffmann,et al.  Transcriptional regulation via the NF-κB signaling module , 2006, Oncogene.

[5]  Z. Weng,et al.  Structure, function, and evolution of transient and obligate protein-protein interactions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Sarah A. Teichmann,et al.  Principles of protein-protein interactions , 2002, ECCB.

[7]  G. Ghosh,et al.  The Crystal Structure of the IκBα/NF-κB Complex Reveals Mechanisms of NF-κB Inactivation , 1998, Cell.

[8]  U. Zabel,et al.  Purified human IκB can rapidly dissociate the complex of the NF-κB transcription factor with its cognate DNA , 1990, Cell.

[9]  Alexander Hoffmann,et al.  IκBɛ provides negative feedback to control NF-κB oscillations, signaling dynamics, and inflammatory gene expression , 2006, The Journal of cell biology.

[10]  A. Hoffmann,et al.  One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. , 2004, Cell.

[11]  Hideaki Ishikawa,et al.  Chronic Inflammation and Susceptibility to Bacterial Infections in Mice Lacking the Polypeptide (p)105 Precursor (NF-κB1) but Expressing p50 , 1998, The Journal of experimental medicine.

[12]  Alexander Hoffmann,et al.  Lessons from mathematically modeling the NF‐κB pathway , 2012, Immunological reviews.

[13]  David Baltimore,et al.  Genetic analysis of NF‐κB/Rel transcription factors defines functional specificities , 2003, The EMBO journal.

[14]  U. Zabel,et al.  Purified human I kappa B can rapidly dissociate the complex of the NF-kappa B transcription factor with its cognate DNA. , 1990, Cell.

[15]  Hana Kim,et al.  A Fourth IκB Protein within the NF-κB Signaling Module , 2007, Cell.

[16]  D. Guttridge,et al.  RelA/p65 Regulation of IκBβ , 2005, Molecular and Cellular Biology.

[17]  A. Hoffmann,et al.  A Fourth IkB Protein within the NF-kB Signaling Module , 2007 .

[18]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[19]  A. Hoffmann,et al.  Stabilization of RelB Requires Multidomain Interactions with p100/p52* , 2008, Journal of Biological Chemistry.

[20]  G. Ghosh,et al.  Mechanism of IκBα Binding to NF-κB Dimers* , 2000, The Journal of Biological Chemistry.

[21]  A. Hoffmann,et al.  Control of RelB during dendritic cell activation integrates canonical and non-canonical NF-κB pathways , 2012, Nature Immunology.

[22]  A. Hoffmann,et al.  IκBε Is a Key Regulator of B Cell Expansion by Providing Negative Feedback on cRel and RelA in a Stimulus-Specific Manner , 2014, The Journal of Immunology.

[23]  David Baltimore,et al.  IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response. , 2010 .

[24]  David Baltimore,et al.  One Nucleotide in a κB Site Can Determine Cofactor Specificity for NF-κB Dimers , 2004, Cell.

[25]  Alexander Hoffmann,et al.  Generation and Activation of Multiple Dimeric Transcription Factors within the NF-κB Signaling System , 2008, Molecular and Cellular Biology.

[26]  Inder M. Verma,et al.  Signal-dependent and -independent Degradation of Free and NF-κB-bound IκBα* , 2000, The Journal of Biological Chemistry.

[27]  Elizabeth A. Komives,et al.  Kinetic enhancement of NF-κB·DNA dissociation by IκBα , 2009, Proceedings of the National Academy of Sciences.

[28]  D. Baltimore,et al.  I kappa B: a specific inhibitor of the NF-kappa B transcription factor. , 1988, Science.

[29]  F. Greten,et al.  Ar Ticle Ib Is an Essential Co-activator for Lps-induced Il-1 Transcription in Vivo , 2022 .

[30]  M. Hottiger,et al.  p65 controls NF-κB activity by regulating cellular localization of IκBβ. , 2011, The Biochemical journal.

[31]  G P Nolan,et al.  The p65 subunit of NF-kappa B regulates I kappa B by two distinct mechanisms. , 1993, Genes & development.

[32]  A. Hoffmann,et al.  A Pathway Switch Directs BAFF Signaling to Distinct NFκB Transcription Factors in Maturing and Proliferating B Cells , 2014, Cell reports.

[33]  A. Hoffmann,et al.  The Nfkb1 and Nfkb2 proteins p105 and p100 function as the core of high-molecular-weight heterogeneous complexes. , 2009, Molecular cell.

[34]  G. Ghosh,et al.  The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. , 1998, Cell.

[35]  A. Hoffmann,et al.  Transcriptional regulation via the NF-kappaB signaling module. , 2006, Oncogene.

[36]  S. Ghosh,et al.  Role of unphosphorylated, newly synthesized I kappa B beta in persistent activation of NF-kappa B , 1996, Molecular and cellular biology.

[37]  Andre Levchenko,et al.  A homeostatic model of IκB metabolism to control constitutive NF-κB activity , 2007, Molecular systems biology.

[38]  A. Hoffmann,et al.  Encoding NF- (cid:1) B temporal control in response to TNF: distinct roles for the negative regulators I (cid:1) B (cid:2) and A20 , 2008 .

[39]  X. Mao,et al.  COMMD1 promotes the ubiquitination of NF‐κB subunits through a cullin‐containing ubiquitin ligase , 2007, The EMBO journal.

[40]  A. Hoffmann,et al.  The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. , 2002, Science.