An empirical study on similarity-based mating for evolutionary multiobjective combinatorial optimization

We have already proposed a similarity-based mating scheme to recombine extreme and similar parents for evolutionary multiobjective optimization. In this paper, we examine the effect of the similarity-based mating scheme on the performance of evolutionary multiobjective optimization (EMO) algorithms. First we examine which is better between recombining similar or dissimilar parents. Next we examine the effect of biasing selection probabilities toward extreme solutions that are dissimilar from other solutions in each population. Then we examine the effect of dynamically changing the strength of this bias during the execution of EMO algorithms. Computational experiments are performed on a wide variety of test problems for multiobjective combinatorial optimization. Experimental results show that the performance of EMO algorithms can be improved by the similarity-based mating scheme for many test problems.

[1]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[2]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[3]  Prabhat Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[4]  Qguhm -DVNLHZLF,et al.  On the performance of multiple objective genetic local search on the 0 / 1 knapsack problem . A comparative experiment , 2000 .

[5]  Tomoyuki Hiroyasu,et al.  NCGA: Neighborhood Cultivation Genetic Algorithm for Multi-Objective Optimization Problems , 2002, GECCO Late Breaking Papers.

[6]  Hisao Ishibuchi,et al.  Comparison Between Lamarckian and Baldwinian Repair on Multiobjective 0/1 Knapsack Problems , 2005, EMO.

[7]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[8]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[9]  Bernhard Sendhoff,et al.  A critical survey of performance indices for multi-objective optimisation , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[10]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[11]  Hisao Ishibuchi,et al.  Mating Scheme for Controlling the Diversity-Convergence Balance for Multiobjective Optimization , 2004, GECCO.

[12]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[13]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[14]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[15]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[16]  David E. Goldberg,et al.  Multiobjective hBOA, clustering, and scalability , 2005, GECCO '05.

[17]  Hideo Tanaka,et al.  Genetic algorithms for flowshop scheduling problems , 1996 .

[18]  Andrzej Jaszkiewicz Comparison of local search-based metaheuristics on the multiple objective knapsack problem , 2001 .

[19]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[20]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[21]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[22]  Andrzej Jaszkiewicz,et al.  On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study , 2004, Eur. J. Oper. Res..

[23]  Hisao Ishibuchi,et al.  A Similarity-Based Mating Scheme for Evolutionary Multiobjective Optimization , 2003, GECCO.

[24]  Yaochu Jin,et al.  A Critical Survey of Performance Indices for Multi-Objective Optimisation , 2003 .

[25]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[26]  Christine L. Mumford,et al.  Comparing representations and recombination operators for the multi-objective 0/1 knapsack problem , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[27]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[28]  D. Corne,et al.  On Metrics for Comparing Non Dominated Sets , 2001 .

[29]  Hisao Ishibuchi,et al.  An Empirical Study on the Effect of Mating Restriction on the Search Ability of EMO Algorithms , 2003, EMO.

[30]  Hisao Ishibuchi,et al.  Recombination of Similar Parents in EMO Algorithms , 2005, EMO.

[31]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[32]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[33]  T. Hiroyasu,et al.  NEIGHBORHOOD CULTIVATION GENETIC ALGORITHM FOR MULTI-OBJECTIVE OPTIMIZATION PROBLEMS , 2002 .

[34]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[35]  Tomoyuki Hiroyasu,et al.  SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2 , 2004, PPSN.

[36]  Gary B. Lamont,et al.  Explicit building-block multiobjective evolutionary algorithms for NPC problems , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[37]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[38]  Gary B. Lamont,et al.  Applications Of Multi-Objective Evolutionary Algorithms , 2004 .

[39]  David Corne,et al.  A comparison of diverse approaches to memetic multiobjective combinatorial optimization , 2000 .

[40]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[41]  Peter J. Fleming,et al.  Evolutionary many-objective optimisation: an exploratory analysis , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[42]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[43]  Rajeev Kumar,et al.  Running Time Analysis of a Multiobjective Evolutionary Algorithm on Simple and Hard Problems , 2005, FOGA.

[44]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[45]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[46]  Hisao Ishibuchi,et al.  Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms , 2006, PPSN.

[47]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[48]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.