High gain observer for a class of nonlinear systems with coupled structure and sampled output measurements: application to a quadrotor

ABSTRACT This paper proposes a new high gain observer for a class of non-uniformly observable nonlinear systems with coupled structure driven by sampled outputs. The considered class of systems is particularly constituted by several subsystems where each subsystem is associated to a subset of the output variables. The observer design is carried out through two steps. First, a high-gain observer is proposed in the continuous-time output case under the assumption that an adequate persistent excitation condition is satisfied by each subsystem. Then, the proposed observer is redesigned to handle the case of sampled outputs leading thereby to a continuous-discrete time observer. The latter property is achieved thanks to the approach pursued along the convergence analysis. The effectiveness of the proposed observer is emphasised in a realistic simulation framework involving a mathematical model of a quadrotor which is diffeomorphic to the proposed class of considered systems.

[1]  H. Hammouri,et al.  Observer design for a special class of nonlinear systems , 1998 .

[2]  Mohammed M'Saad,et al.  High gain observer for a class of non-triangular systems , 2011, Syst. Control. Lett..

[3]  Hassan Hammouri,et al.  Constant gain observer for continuous-discrete time uniformly observable systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[4]  Alberto Castillo,et al.  Disturbance observer-based quadrotor attitude tracking control for aggressive maneuvers , 2019, Control Engineering Practice.

[5]  J. Gauthier,et al.  Exponentially converging observers for distillation columns and internal stability of the dynamic output feedback , 1992 .

[6]  Hassan Hammouri,et al.  Observer Design for MIMO Non-Uniformly Observable Systems , 2012, IEEE Transactions on Automatic Control.

[7]  Hassan Hammouri,et al.  Observer Design for Continuous-Discrete Time State Affine Systems up to Output Injection , 2004, Eur. J. Control.

[8]  Mohammed M'Saad,et al.  Observer design for a class of MIMO nonlinear systems , 2004, Autom..

[9]  Youmin Zhang,et al.  Disturbance observer-based adaptive fault-tolerant control for a quadrotor helicopter subject to parametric uncertainties and external disturbances , 2019, Mechanical Systems and Signal Processing.

[10]  J. Gauthier,et al.  High gain estimation for nonlinear systems , 1992 .

[11]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[12]  Hassan Hammouri,et al.  Observer Synthesis for a Class of Nonlinear Control Systems , 1996, Eur. J. Control.

[13]  Gildas Besançon,et al.  An Immersion-Based Observer Design for Rank-Observable Nonlinear Systems , 2007, IEEE Transactions on Automatic Control.

[14]  J. Gauthier,et al.  Deterministic Observation Theory and Applications , 2001 .

[15]  H. Hammouri,et al.  Nonlinear observers for locally uniformly observable systems , 2003 .

[16]  Hassan Hammouri,et al.  High Gain Observer for Structured Multi-Output Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.

[17]  Mohammed M'Saad,et al.  Observer design for a class of uncertain nonlinear systems with sampled outputs - Application to the estimation of kinetic rates in bioreactors , 2015, Autom..

[18]  H. Shim,et al.  Semi-global observer for multi-output nonlinear systems , 2001 .

[19]  Iasson Karafyllis,et al.  From Continuous-Time Design to Sampled-Data Design of Observers , 2009, IEEE Transactions on Automatic Control.

[20]  Mohammed M'Saad,et al.  A cascade observer for a class of MIMO non uniformly observable systems with delayed sampled outputs , 2016, Syst. Control. Lett..

[21]  Mohammed M'Saad,et al.  Continuous-Discrete Time Observer for a class of MIMO Nonlinear Systems , 2013 .

[22]  Costas Kravaris,et al.  Discrete-time nonlinear observer design using functional equations , 2001 .

[23]  Vincent Andrieu,et al.  Continuous-Discrete Time Observer Design for Lipschitz Systems With Sampled Measurements , 2014, IEEE Transactions on Automatic Control.

[24]  K. Busawon,et al.  A nonlinear observer for induction motors , 2001 .

[25]  Oscar Salas-Peña,et al.  Extended observer based on adaptive second order sliding mode control for a fixed wing UAV. , 2017, ISA transactions.

[26]  Krishna Busawon,et al.  Observer design based on triangular form generated by injective map , 2000, IEEE Trans. Autom. Control..

[27]  Mohammed M'Saad,et al.  Adaptive observers for a class of uniformly observable systems with nonlinear parametrization and sampled outputs , 2014, Autom..

[28]  Jingcheng Wang,et al.  Reset observers for linear time-varying delay systems: Delay-dependent approach , 2014, J. Frankl. Inst..

[29]  Changchun Hua,et al.  Continuous–discrete-time adaptive observers for nonlinear systems with sampled output measurements , 2017, Int. J. Syst. Sci..

[30]  Dragan Nesic,et al.  A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation , 2004, Autom..

[31]  Hicham MEDROMI A High Gain Observer and Sliding Mode Controller for an Autonomous Quadrotor Helicopter , 2001 .

[32]  Jesús Santiaguillo-Salinas,et al.  Observer-Based Time-Varying Backstepping Control for a Quadrotor Multi-Agent System , 2017, 2017 International Conference on Unmanned Aircraft Systems (ICUAS).

[33]  Honglun Wang,et al.  Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator , 2018 .