We suggest Cobalt-55 (Co) as a Calcium (Ca)-marker to visualize Ca transport across the neuronal membrane. Elevation of intracellular Ca is closely linked with the process of neuronal cell-decay. Co-uptake is correlated with Ca-accumulation through divalent cation-permeable kainate (KA)-activated receptor-operated channels in the neuronal membrane. This hypothesis was studied with position emission tomography (PET) both in patients with a ischemic cerebro-vascular accident (CVA) and in patients with relapsing progressive multiple sclerosis (MS). Co-PET studies were performed in a dynamic mode (6 frames of 10 minutes) 20-25 hours after iv.-administration of 1-2 mCi Co. Regional specific accumulation irrespective of blood brain barrier (BBB) integrity in the (clinically appropriate) affected cerebral region could be demonstrated in CVA-patients, thus suggesting neuronal decay in (the early phase of) infarction. In MS, inhomogeneous cerebral distribution of Co was detected, in contrast to healthy volunteers. This suggests focal accumulation of Co in multiple spots of neuronal decay, possibly related to MS-lesions on MRI. In conclusion, Co-PET may prove to be a valuable tool for the early detection of neuronal decay not only in CVA and MS, but in other brain-pathology as well. The usefulness of Co-PET in imaging brain-tumors and myocardial ischemia has already been established.