Models of Interface Separation Accompanied by Plastic Dissipation at Multiple Scales

Two continuum mechanical models of interface fracture for interfaces joining materials where at least one undergoes plastic deformation are reviewed and examined critically. The embedded process zone model (EPZ model) has an adhesive zone, characterized by a work of separation and an interface strength, embedded within a continuum model of the adjoining materials. The SSV model imposes an elastic, plasticity-free layer of prescribed thickness between the interface and the surrounding elastic-plastic continuum. Crack advance requires the work of separation to be supplied by the local elastic crack tip field. The objective of each model is to provide the relation between the macroscopic interface toughness (the total work of fracture) and the work of separation. Under steady-state crack growth, the total work of fracture is the work of separation plus the work of plastic dissipation, the latter often far exceeding the former. It will be argued that each model has its own domain of validity, subject to the accuracy of conventional continuum plasticity at small scales, but neither is able to capture the dramatic trends which have been observed in macroscopic toughness measurements stemming from alterations in interface bonding conditions. A unified model is proposed which coincides with the two models in their respective domains of validity and provides a transition between them. Interface separation energy and interface strength (the peak separation stress) each play a central role in the unified model. Strain gradient plasticity is used to illustrate the effect of plastic deformation at the micron scale on the link between interface and macroscopic properties.