High-precision parameter estimation and the Zeno–anti-Zeno crossover in an atom–cavity-optomechanical system

A scheme is proposed to estimate the decay rates of the subsystem in an atom–cavity-optomechanical system which also is known as the hybrid optomechanical system. Quantum Fisher information and quantum Zeno effect (QZE) are investigated under different conditions. The results show that the estimation precision of the decay rates can reach $$9.64\times 10^{-6}$$ 9.64 × 10 - 6 , $$3.49\times 10^{-4}$$ 3.49 × 10 - 4 and $$7.91\times 10^{-5}$$ 7.91 × 10 - 5 , respectively. The Zeno–anti-Zeno crossover can be realized in the hybrid optomechanical system. We find that both QZE and quantum anti-Zeno effect (QAZE) are always beneficial to the estimation of the mechanical oscillator decay rate. However, when the cavity decay rate is estimated, QAZE may enhance or inhibit the estimation precision at the different time regions. The results provide some potential applications in quantum networks and quantum Zeno switch.

[1]  B. Gutiérrez-Medina,et al.  Observation of the quantum zeno and anti-zeno effects in an unstable system , 2001, Technical Digest. Summaries of papers presented at the Quantum Electronics and Laser Science Conference. Postconference Technical Digest (IEEE Cat. No.01CH37172).

[2]  Tobias J. Kippenberg,et al.  Optomechanically Induced Transparency , 2010, Science.

[3]  Pieter Kok,et al.  General optimality of the Heisenberg limit for quantum metrology. , 2010, Physical review letters.

[4]  Stabilized entanglement of massive mechanical oscillators , 2018, Nature.

[5]  K. Mølmer,et al.  Bayesian parameter inference from continuously monitored quantum systems , 2012, 1212.5700.

[6]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[7]  Xin Zhou,et al.  Effects of partial-collapse measurement on the parameter-estimation precision of noisy quantum channels , 2017, Quantum Inf. Process..

[8]  F. Nori,et al.  The transition from quantum Zeno to anti-Zeno effects for a qubit in a cavity by varying the cavity frequency , 2012 .

[9]  Benhu Zhou,et al.  Ground-state cooling of a nanomechanical resonator via single-polariton optomechanics in a coupled quantum-dot-cavity system , 2016 .

[10]  Wen-Hao Zhang,et al.  Achieving Heisenberg-Scaling Precision with Projective Measurement on Single Photons. , 2018, Physical review letters.

[11]  Klaus Mølmer,et al.  Fisher information and the quantum Cramér-Rao sensitivity limit of continuous measurements. , 2013, Physical review letters.

[12]  J. Piilo,et al.  Zeno and anti-Zeno effects for quantum Brownian motion. , 2006, Physical review letters.

[13]  Colin P. Williams,et al.  Quantum clock synchronization based on shared prior entanglement , 2000, Physical review letters.

[14]  Manish K. Gupta,et al.  Quantum-enhanced spectroscopy with entangled multiphoton states , 2016, 1603.04509.

[15]  K. Mølmer,et al.  Quantum Zeno effect in parameter estimation , 2015, 1506.08763.

[16]  Chen Wang,et al.  Zeno effect of an open quantum system in the presence of 1/f noise , 2017, 1710.02110.

[17]  Klaus Molmer,et al.  Parameter estimation by multichannel photon counting , 2014, 1411.3474.

[18]  J. Dowling Quantum optical metrology – the lowdown on high-N00N states , 2008, 0904.0163.

[19]  K. Berrada,et al.  Protecting the precision of estimation in a photonic crystal , 2015 .

[20]  S. B. Cavalcanti,et al.  Restoring the Heisenberg limit via collective non-Markovian dephasing , 2018, Physical Review A.

[21]  P. Meystre,et al.  Optical bistability and mirror confinement induced by radiation pressure , 1983 .

[22]  Dong Xie,et al.  Enhancing precision of damping rate by PT symmetric Hamiltonian , 2018, Quantum Inf. Process..

[23]  V. Gontis,et al.  Quantum anti-Zeno effect , 1997 .

[24]  A. Thilagam Zeno–anti-Zeno crossover dynamics in a spin–boson system , 2010 .

[25]  Nicol'as Quesada,et al.  Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement , 2014, 1404.7110.

[26]  E. Faizi,et al.  Ultimate bound and optimal measurement for estimation of coupling constant in Tavis–Cummings model , 2018, Quantum Inf. Process..

[27]  S. Girvin,et al.  Single-photon optomechanics. , 2011, Physical review letters.

[28]  D. James,et al.  Effective Hamiltonian theory and its applications in quantum information , 2007, 0706.1090.

[29]  Zeno and anti-Zeno effects in spin-bath models , 2007, cond-mat/0701655.

[30]  P. Knight,et al.  The Quantum jump approach to dissipative dynamics in quantum optics , 1997, quant-ph/9702007.

[31]  H. R. Jahromi Parameter estimation in plasmonic QED , 2018 .

[32]  Yong Li,et al.  Optimal quantum parameter estimation in a pulsed quantum optomechanical system , 2016, 1601.01801.

[33]  W. Munro,et al.  Entanglement is not a critical resource for quantum metrology , 2009, 0906.1027.

[34]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[35]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[36]  Warwick P. Bowen,et al.  Quantum metrology and its application in biology , 2014, 1409.0950.

[37]  Franco Nori,et al.  Quantum Zeno switch for single-photon coherent transport , 2008, 0812.2151.

[38]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[39]  J. Liang,et al.  Entanglement in a Tripartite Cavity-Optomechanical System , 2013 .

[40]  L. Kuang,et al.  Zeno–anti-Zeno crossover via external fields in a one-dimensional coupled-cavity waveguide , 2010, 1010.1805.

[41]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[42]  A. Datta,et al.  Quantum Metrology Without Quantum Entanglement , 2012 .

[43]  Animesh Datta,et al.  Quantum metrology: dynamics versus entanglement. , 2008, Physical review letters.

[45]  Thierry Botter,et al.  Non-classical light generated by quantum-noise-driven cavity optomechanics , 2012, Nature.

[46]  P. Facchi,et al.  Quantum Zeno subspaces. , 2002, Physical review letters.

[47]  A. Clerk,et al.  Entangled massive mechanical oscillators , 2017, 1711.01640.

[48]  H. R. Jahromi Relation between quantum probe and entanglement in n-qubit systems within Markovian and non-Markovian environments , 2017 .

[49]  M. Jafarzadeh,et al.  Estimation of temperature in micromaser-type systems , 2018, Quantum Inf. Process..

[50]  William J Munro,et al.  Quantum metrology with entangled coherent states. , 2011, Physical review letters.

[51]  Aravind Chiruvelli,et al.  Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. , 2009, Physical review letters.

[52]  Wéi Wú,et al.  Quantum Zeno and anti-Zeno effects in quantum dissipative systems , 2017, 1701.02100.

[53]  William J. Munro,et al.  Erratum: Quantum Metrology with Entangled Coherent States [Phys. Rev. Lett.107, 083601 (2011)] , 2011 .

[54]  N. Mavalvala,et al.  Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.

[55]  Yao Yao,et al.  Enhancing parameter precision of optimal quantum estimation by direct quantum feedback , 2015, 1503.00236.

[56]  R. J. Sewell,et al.  Interaction-based quantum metrology showing scaling beyond the Heisenberg limit , 2010, Nature.

[57]  Xiaoguang Wang,et al.  Heisenberg-limited estimation of the coupling rate in an optomechanical system with a two-level system , 2018, Physical Review A.

[58]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[59]  Christopher C. Gerry,et al.  Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements , 2003 .

[60]  C. Helstrom Quantum detection and estimation theory , 1969 .