Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot

Here we present the control, performance and modeling of an untethered electromagnetically actuated magnetic micro-robot. The microrobot, which is composed of neodymium—iron—boron with dimensions 250 μm 1 130 μm 1 10 μm , is actuated by a system of six macro-scale electromagnets. Periodically varying magnetic fields are used to impose magnetic torques, which induce stick—slip motion in the micro-robot. These magnetic forces and torques are incorporated into a comprehensive dynamic model, which captures the behavior of the micro-robot. By pivoting the micro-robot about an edge, non-planar obstacles with characteristic sizes comparable to the robot length can be surmounted. Actuation is demonstrated on several substrates with different surface properties, in a fluid environment, and in a vacuum. Observed micro-robot translation speeds can exceed 10 mm s-1 .

[1]  B. Behkam,et al.  Bacterial flagella-based propulsion and on/off motion control of microscale objects , 2007 .

[2]  Bradley J. Nelson,et al.  Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields , 2006, Int. J. Robotics Res..

[3]  B.R. Donald,et al.  Planar Microassembly by Parallel Actuation of MEMS Microrobots , 2008, Journal of Microelectromechanical Systems.

[4]  Metin Sitti,et al.  Two-Dimensional Contact and Noncontact Micromanipulation in Liquid Using an Untethered Mobile Magnetic Microrobot , 2009, IEEE Transactions on Robotics.

[5]  Göran Stemme,et al.  A WALKING SILICON MICRO-ROBOT , 1999 .

[6]  John E. Sader,et al.  Normal and torsional spring constants of atomic force microscope cantilevers , 2004 .

[7]  Sylvain Martel Special surface for power delivery to wireless micro-electro-mechanical systems , 2005 .

[8]  J. Israelachvili Intermolecular and surface forces , 1985 .

[9]  S. Martel,et al.  Controlled manipulation and actuation of micro-objects with magnetotactic bacteria , 2006 .

[10]  S. Martel,et al.  MRI systems as a mean of propulsion for a microdevice in blood vessels , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[11]  T. H. Boyer,et al.  The force on a magnetic dipole , 1988 .

[12]  Eui-Sung Yoon,et al.  The effect of contact area on nano/micro-scale friction , 2005 .

[13]  Le Xuan Anh,et al.  Dynamics of Mechanical Systems with Coulomb Friction , 2003 .

[14]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[15]  Victor M. Bright,et al.  Prototype microrobots for micro-positioning and micro-unmanned vehicles , 2000 .

[16]  D. Stewart Finite-dimensional contact mechanics , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  X. Li,et al.  The effect of water on friction of MEMS , 1999 .

[18]  S. Senturia Microsystem Design , 2000 .

[19]  D. Cheng Field and wave electromagnetics , 1983 .

[20]  E. Haug,et al.  Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion—I theory , 1986 .

[21]  Russell M. Taylor,et al.  Thermally actuated untethered impact-driven locomotive microdevices , 2006 .

[22]  G. G. Karady,et al.  Comparison of calibration systems for magnetic field measurement equipment , 1994 .

[23]  Sylvain Martel,et al.  Three-legged wireless miniature robots for mass-scale operations at the sub-atomic scale , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[24]  Masaki Nakano,et al.  Wireless micro swimming machine with magnetic thin film , 2004 .

[25]  Metin Sitti,et al.  Dynamic Modeling of Stick Slip Motion in an Untethered Magnetic Micro-Robot , 2008, Robotics: Science and Systems.

[26]  Dominic R. Frutiger,et al.  Wireless resonant magnetic microactuator for untethered mobile microrobots , 2008 .

[27]  이정호,et al.  Fundamentals of Fluid Mechanics, 6th Edition , 2009 .

[28]  M. Sitti,et al.  Multiple magnetic microrobot control using electrostatic anchoring , 2009 .

[29]  Gregory T. A. Kovacs,et al.  OMNIDIRECTIONAL WALKING MICROROBOT REALIZED BY THERMAL MICROACTUATOR ARRAYS , 2001 .

[30]  Andreas Opitz,et al.  Nanofriction of silicon oxide surfaces covered with thin water films , 2003 .

[31]  B.R. Donald,et al.  An untethered, electrostatic, globally controllable MEMS micro-robot , 2006, Journal of Microelectromechanical Systems.

[32]  Metin Sitti,et al.  An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces , 2008, 2008 IEEE International Conference on Robotics and Automation.