Matched Wake Analysis: Finding Causal Relationships in Spatiotemporal Event Data

This paper introduces a new method for finding causal relationships in spatiotemporal event data with potential applications in conflict research, criminology, and epidemiology. The method analyzes how different types of interventions affect subsequent levels of reactive events. Sliding spatiotemporal windows and statistical matching are used for robust and clean causal inference. Thereby, two well-described empirical problems in establishing causal relationships in event data analysis are resolved: the modifiable areal unit problem and selection bias. The paper presents the method formally and demonstrates its effectiveness in Monte Carlo simulations and an empirical example by showing how instances of civilian assistance to US forces changed in response to indiscriminate insurgent violence in Iraq.

[1]  S. Openshaw A million or so correlation coefficients : three experiments on the modifiable areal unit problem , 1979 .

[2]  Kristian Skrede Gleditsch,et al.  The Geography of the International System: The CShapes Dataset , 2010 .

[3]  J. Angrist Mostly Harmless Econometrics , 2008 .

[4]  Jason Lyall,et al.  Does Indiscriminate Violence Incite Insurgent Attacks? , 2009 .

[5]  Noel A Cressie,et al.  Change of support and the modifiable areal unit problem , 1996 .

[6]  M. Kulldorff A spatial scan statistic , 1997 .

[7]  D. Rubin Matched Sampling for Causal Effects: Matching to Remove Bias in Observational Studies , 1973 .

[8]  Shane D. Johnson,et al.  Space–Time Modeling of Insurgency and Counterinsurgency in Iraq , 2012 .

[9]  D. Cox Two further applications of a model for binary regression , 1958 .

[10]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[11]  J. O’Loughlin,et al.  Peering into the Fog of War: The Geography of the WikiLeaks Afghanistan War Logs, 2004-2009 , 2010 .

[12]  John O'Loughlin,et al.  The Localized Geographies of Violence in the North Caucasus of Russia, 1999–2007 , 2011 .

[13]  R. Lalonde Evaluating the Econometric Evaluations of Training Programs with Experimental Data , 1984 .

[14]  Jonathan N. Wand,et al.  Assessing partisan bias in voting technology: The case of the 2004 New Hampshire recount , 2007 .

[15]  S. Dark,et al.  The modifiable areal unit problem (MAUP) in physical geography , 2007 .

[16]  Ken Sexton,et al.  Modifiable Areal Unit Problem (MAUP) , 2008 .

[17]  John O'Loughlin,et al.  Space-Time Granger Analysis of the War in Iraq: A Study of Coalition and Insurgent Action-Reaction , 2012 .

[18]  Max Planck,et al.  Estimating Causal Effects with Matching Methods in the Presence and Absence of Bias Cancellation , 2000 .

[19]  E. Duflo,et al.  How Much Should We Trust Differences-in-Differences Estimates? , 2001 .

[20]  Dirk Helbing,et al.  Group Segregation and Urban Violence , 2013, SSRN Electronic Journal.

[21]  T. David Mason,et al.  The Political Economy of Death Squads: Toward a Theory of the Impact of State-Sanctioned Terror , 1989 .

[22]  H. Hegre,et al.  Poverty and Civil War Events , 2009 .

[23]  Nils B. Weidmann,et al.  Politically Relevant Ethnic Groups across Space and Time: Introducing the GeoEPR Dataset 1 , 2011 .

[24]  David W. S. Wong The Modifiable Areal Unit Problem (MAUP) , 2004 .

[25]  Nils B. Weidmann,et al.  Violence and Ethnic Segregation: A Computational Model Applied to Baghdad , 2013 .

[26]  Halvard Buhaug,et al.  Dude, Where’s My Conflict? , 2010 .

[27]  R. McColl THE INSURGENT STATE: TERRITORIAL BASES OF REVOLUTION , 1969 .

[28]  G. Imbens,et al.  Large Sample Properties of Matching Estimators for Average Treatment Effects , 2004 .

[29]  David A. Jaeger,et al.  The Cycle of Violence? An Empirical Analysis of Fatalities in the Palestinian-Israeli Conflict , 2005, SSRN Electronic Journal.

[30]  Clionadh Raleigh,et al.  Introducing ACLED: An Armed Conflict Location and Event Dataset , 2010 .

[31]  G. King,et al.  Causal Inference without Balance Checking: Coarsened Exact Matching , 2012, Political Analysis.

[32]  Matthew Adam Kocher,et al.  Aerial Bombing and Counterinsurgency in the Vietnam War , 2011 .

[33]  Clionadh Raleigh,et al.  Population Size, Concentration, and Civil War: A Geographically Disaggregated Analysis , 2007 .

[34]  N. Kanwisher,et al.  Both sides retaliate in the Israeli–Palestinian conflict , 2010, Proceedings of the National Academy of Sciences.

[35]  S. Kalyvas,et al.  The logic of violence in civil war , 2011 .

[36]  Barry J. Kronenfeld,et al.  The Colocation Quotient: A New Measure of Spatial Association Between Categorical Subsets of Points. 协同区位商:点集分类子集间空间关联性的新度量标准 , 2011 .

[37]  Dean B. Gesch,et al.  New land surface digital elevation model covers the Earth , 1999 .

[38]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .