Polymer Simulations of Heteromorphic Chromatin Predict the 3D Folding of Complex Genomic Loci

[1]  Adam Buckle,et al.  Functional characteristics of novel pancreatic Pax6 regulatory elements , 2018, Human molecular genetics.

[2]  Thomas Gregor,et al.  Dynamic interplay between enhancer-promoter topology and gene activity , 2018, Nature Genetics.

[3]  D. Marenduzzo,et al.  Complementary chromosome folding by transcription factors and cohesin , 2018, bioRxiv.

[4]  S. Mundlos,et al.  Polymer physics predicts the effects of structural variants on chromatin architecture , 2018, Nature Genetics.

[5]  H. Bourbon,et al.  A long range distal enhancer controls temporal fine-tuning of PAX6 expression in neuronal precursors. , 2018, Developmental biology.

[6]  Robert Tjian,et al.  Visualizing transcription factor dynamics in living cells , 2018, The Journal of cell biology.

[7]  T. Meyer,et al.  Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements , 2018, Science.

[8]  A. Stasiak,et al.  Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes , 2017, Nucleic acids research.

[9]  Robert S. Illingworth,et al.  PARP mediated chromatin unfolding is coupled to long-range enhancer activation , 2017, bioRxiv.

[10]  G. Tiana,et al.  Modelling genome-wide topological associating domains in mouse embryonic stem cells , 2017, Chromosome Research.

[11]  Viviana I. Risca,et al.  Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping , 2016, Nature.

[12]  Eivind Hovig,et al.  Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization , 2016, Scientific Reports.

[13]  D. Marenduzzo,et al.  Ephemeral protein binding to DNA shapes stable nuclear bodies and chromatin domains , 2016, bioRxiv.

[14]  L. Pennacchio,et al.  Genetic dissection of the α-globin super-enhancer in vivo , 2016, Nature Genetics.

[15]  L. Mirny,et al.  Chromosome Compaction by Active Loop Extrusion , 2016, Biophysical journal.

[16]  Davide Marenduzzo,et al.  Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains , 2016, Nucleic acids research.

[17]  Davide Marenduzzo,et al.  Predicting the three-dimensional folding of cis-regulatory regions in mammalian genomes using bioinformatic data and polymer models , 2016, Genome Biology.

[18]  J. Telenius,et al.  Multiplexed analysis of chromosome conformation at vastly improved sensitivity , 2015, Nature Methods.

[19]  Angelo Rosa,et al.  Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure , 2015, bioRxiv.

[20]  Neva C. Durand,et al.  Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes , 2015, Proceedings of the National Academy of Sciences.

[21]  L. Mirny,et al.  Formation of Chromosomal Domains in Interphase by Loop Extrusion , 2015, bioRxiv.

[22]  Ning Leng,et al.  Oscope identifies oscillatory genes in unsynchronized single cell RNA-seq experiments , 2015, Nature Methods.

[23]  S. Quake,et al.  A survey of human brain transcriptome diversity at the single cell level , 2015, Proceedings of the National Academy of Sciences.

[24]  P. Wolynes,et al.  Topology, structures, and energy landscapes of human chromosomes , 2015, Proceedings of the National Academy of Sciences.

[25]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[26]  J. Dekker,et al.  Predictive Polymer Modeling Reveals Coupled Fluctuations in Chromosome Conformation and Transcription , 2014, Cell.

[27]  M. Gobbi,et al.  Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment , 2014, Nature Genetics.

[28]  Benjamin Albert,et al.  High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome , 2013, Genome research.

[29]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[30]  D. Marenduzzo,et al.  Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization , 2013, Proceedings of the National Academy of Sciences.

[31]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[32]  Diego di Bernardo,et al.  Colocalization of Coregulated Genes: A Steered Molecular Dynamics Study of Human Chromosome 19 , 2013, PLoS Comput. Biol..

[33]  S. Cockroft,et al.  Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures , 2013, Nature Structural &Molecular Biology.

[34]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[35]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[36]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[37]  D. McBride,et al.  DNaseI Hypersensitivity and Ultraconservation Reveal Novel, Interdependent Long-Range Enhancers at the Complex Pax6 Cis-Regulatory Region , 2011, PloS one.

[38]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[39]  N. Gilbert,et al.  Analysis of Active and Inactive X Chromosome Architecture Reveals the Independent Organization of 30 nm and Large-Scale Chromatin Structures , 2010, Molecular cell.

[40]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[41]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[42]  Wolfgang Huber,et al.  Ringo – an R/Bioconductor package for analyzing ChIP-chip readouts , 2007, BMC Bioinformatics.

[43]  Michael Q. Zhang,et al.  Analysis of the Vertebrate Insulator Protein CTCF-Binding Sites in the Human Genome , 2007, Cell.

[44]  T. Ian Simpson,et al.  Long-range downstream enhancers are essential for Pax6 expression , 2006, Developmental biology.

[45]  M. Sander,et al.  NKX6 transcription factor activity is required for α- andβ -cell development in the pancreas , 2005 .

[46]  Nick Gilbert,et al.  Chromatin Architecture of the Human Genome Gene-Rich Domains Are Enriched in Open Chromatin Fibers , 2004, Cell.

[47]  N. Gilbert,et al.  Distinctive higher-order chromatin structure at mammalian centromeres , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[48]  T. R. Hebbes,et al.  Core histone hyperacetylation co‐maps with generalized DNase I sensitivity in the chicken beta‐globin chromosomal domain. , 1994, The EMBO journal.

[49]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[50]  T. R. Hebbes,et al.  A direct link between core histone acetylation and transcriptionally active chromatin. , 1988, The EMBO journal.

[51]  Michael Q. Zhang,et al.  BMC Bioinformatics Methodology article Statistical significance of cis-regulatory modules , 2007 .

[52]  M. Sander,et al.  NKX6 transcription factor activity is required for alpha- and beta-cell development in the pancreas. , 2005, Development.