Locally uniform domains and extension of bmo functions

We prove that for a domain Ω ⊂ Rn, being (ǫ, δ) in the sense of Jones is equivalent to being an extension domain for bmo(Ω), the nonhonomogeneous version of the space of function of bounded mean oscillation on Ω. In the process we demonstrate that these conditions are equivalent to local versions of two other conditions characterizing uniform domains, one involving the presence of length cigars between nearby points and the other a local version of the quasi-hyperbolic uniform condition. Our results show that the definition of bmo(Ω) is closely connected to the geometry of the domain.

[1]  F. Gehring,et al.  Quasiconformally homogeneous domains , 1976 .

[2]  H. Triebel Theory Of Function Spaces , 1983 .

[3]  G. Dafni,et al.  Some characterizations of local bmo and h1 on metric measure spaces , 2012 .

[4]  F. Gehring,et al.  Uniform domains and the quasi-hyperbolic metric , 1979 .

[5]  P. Koskela,et al.  Morrey–Sobolev Extension Domains , 2017 .

[6]  Michael Christ,et al.  The extension problem for certain function spaces involving fractional orders of differentiability , 1984 .

[7]  H. Brezis,et al.  Degree theory and BMO; part I: Compact manifolds without boundaries , 1995 .

[8]  Dorina Mitrea,et al.  Extending Sobolev Functions with Partially Vanishing Traces from Locally (epsilon,delta)-Domains and Applications to Mixed Boundary Problems , 2012, 1208.4177.

[9]  David Goldberg A local version of real Hardy spaces , 1979 .

[10]  P. Shvartsman,et al.  On planar Sobolev $L^m_p$-extension domains , 2014, 1410.3100.

[11]  S. Hofmann,et al.  Harmonic measure and quantitative connectivity: geometric characterization of the $$L^p$$-solvability of the Dirichlet problem , 2017, Inventiones mathematicae.

[12]  A. Brudnyi,et al.  Methods of geometric analysis in extension and trace problems , 2012 .

[13]  Lena Schwartz,et al.  Theory Of Function Spaces Ii , 2016 .

[14]  J. Sarvas,et al.  Injectivity theorems in plane and space , 1979 .

[15]  R. Rzaev,et al.  Φ - maximal Functions Measuring Smoothness , 2015 .

[16]  Peter W. Jones Quasiconformal mappings and extendability of functions in sobolev spaces , 1981 .

[17]  R. DeVore,et al.  BESOV SPACES ON DOMAINS IN Rd , 1993 .

[18]  J. Väisälä Relatively and inner uniform domains , 1998 .