Simulation of three‐dimensional incompressible flows in generalized curvilinear coordinates using a high‐order compact finite‐difference lattice Boltzmann method

[1]  J. H. Whitelaw,et al.  Laminar flow in a square duct of strong curvature , 1977, Journal of Fluid Mechanics.

[2]  A. Xu Finite-difference lattice-Boltzmann methods for binary fluids. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Yong-guang Cheng,et al.  Three-Dimensional Simulation of Balloon Dynamics by the Immersed Boundary Method Coupled to the Multiple-Relaxation-Time Lattice Boltzmann Method , 2015 .

[4]  Wei Shyy,et al.  On the Finite Difference-Based Lattice Boltzmann Method in Curvilinear Coordinates , 1998 .

[5]  Kazem Hejranfar,et al.  A high‐order compact finite‐difference lattice Boltzmann method for simulation of steady and unsteady incompressible flows , 2014 .

[6]  Alexander N Gorban,et al.  Maximum Entropy Principle for Lattice Kinetic Equations , 1998 .

[7]  Wolfgang Schröder,et al.  Lattice Boltzmann Simulations with Locally Refined Meshes , 2011 .

[8]  Stuart E. Rogers,et al.  Steady and unsteady solutions of the incompressible Navier-Stokes equations , 1991 .

[9]  L. Luo,et al.  Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation , 1997 .

[10]  Kazem Hejranfar,et al.  Implementation of a high-order compact finite-difference lattice Boltzmann method in generalized curvilinear coordinates , 2014, J. Comput. Phys..

[11]  R. H. Magarvey,et al.  TRANSITION RANGES FOR THREE-DIMENSIONAL WAKES , 1961 .

[12]  Li Yuan,et al.  Comparison of Implicit Multigrid Schemes for Three-Dimensional Incompressible Flows , 2002 .

[13]  Martin Geier,et al.  Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion part I: Derivation and validation , 2017, J. Comput. Phys..

[14]  Martin Geier,et al.  The cumulant lattice Boltzmann equation in three dimensions: Theory and validation , 2015, Comput. Math. Appl..

[15]  H. R. Pruppacher,et al.  A Numerical Study of the Drag on a Sphere at Low and Intermediate Reynolds Numbers , 1970 .

[16]  G. P. Ghiroldi,et al.  A finite-difference lattice Boltzmann approach for gas microflows , 2013, 1308.0692.

[17]  C. Shu,et al.  Simulation of three‐dimensional flows over moving objects by an improved immersed boundary–lattice Boltzmann method , 2012 .

[18]  Isao Nakamura Steady wake behind a sphere , 1976 .

[19]  J. Korvink,et al.  Cascaded digital lattice Boltzmann automata for high Reynolds number flow. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  S. Taneda Experimental Investigation of the Wake behind a Sphere at Low Reynolds Numbers , 1956 .

[21]  Pierre Sagaut,et al.  Lattice Boltzmann method with selective viscosity filter , 2009, J. Comput. Phys..

[22]  R. Hirsh,et al.  Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique , 1975 .

[23]  Kazem Hejranfar,et al.  Implementing a high‐order accurate implicit operator scheme for solving steady incompressible viscous flows using artificial compressibility method , 2011 .

[24]  Jeffrey L. Young,et al.  Practical aspects of higher-order numerical schemes for wave propagation phenomena , 1999 .

[25]  V. C. Patel,et al.  Flow past a sphere up to a Reynolds number of 300 , 1999, Journal of Fluid Mechanics.

[26]  R. M. C. So,et al.  Stochastic finite difference lattice Boltzmann method for steady incompressible viscous flows , 2010, J. Comput. Phys..

[27]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[28]  M. Geier,et al.  Fourth order Galilean invariance for the lattice Boltzmann method , 2018 .

[29]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[30]  Zhaoli Guo,et al.  Finite difference-based lattice Boltzmann simulation of natural convection heat transfer in a horizontal concentric annulus , 2006 .

[31]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[32]  Miguel R. Visbal,et al.  Further development of a Navier-Stokes solution procedure based on higher-order formulas , 1999 .

[33]  Bastien Chopard,et al.  Lattice Boltzmann method with regularized pre-collision distribution functions , 2006, Math. Comput. Simul..

[34]  S. Orszag,et al.  Direct and Large-Eddy Simulation of the Flow Past a Sphere , 1993 .

[35]  Jacques Magnaudet,et al.  Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow , 1995, Journal of Fluid Mechanics.

[36]  Jaw-Yen Yang,et al.  Implicit Weighted ENO Schemes for the Three-Dimensional Incompressible Navier-Stokes Equations , 1998 .

[37]  D. Gottlieb,et al.  The Stability of Numerical Boundary Treatments for Compact High-Order Finite-Difference Schemes , 1993 .

[38]  Luc Mongeau,et al.  Numerical Simulations of Flow over a Landing Gear with Noise Reduction Devices using the Lattice-Boltzmann Method , 2013 .

[39]  Yoshiaki Kuwata,et al.  A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows , 2015, Comput. Math. Appl..

[40]  James D. Sterling,et al.  Accuracy of Discrete-Velocity BGK Models for the Simulation of the Incompressible Navier-Stokes Equations , 1993, comp-gas/9307003.

[41]  John Abraham,et al.  Multiple-relaxation-time lattice-Boltzmann model for multiphase flow , 2005 .

[42]  Miguel R. Visbal,et al.  High-Order-Accurate Methods for Complex Unsteady Subsonic Flows , 1999 .

[43]  Martin Geier,et al.  Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion part II: Application to flow around a sphere at drag crisis , 2017, J. Comput. Phys..