Visualizing gene expression by whole-body fluorescence imaging.

Transgene expression in intact animals now can be visualized by noninvasive techniques. However, the instruments and protocols developed so far have been formidable and expensive. We describe here a system for rapidly visualizing transgene expression in major organs of intact live mice that is simple, rapid, and eminently affordable. Green fluorescent protein (GFP) is expressed in the cells of brain, liver, pancreas, prostate, and bone, and its fluorescence is encoded in whole-body optical images. For low-magnification images, animals are illuminated atop a fluorescence light box and directly viewed with a thermoelectrically cooled color charge-coupled device camera. Higher-magnification images are made with the camera focused through an epi-fluorescence dissecting microscope. Both nude and normal mice were labeled by directly injecting 8 x 10(10) plaque-forming units/ml of adenoviral GFP in 20-100 microl PBS and 10% glycerol into either the brain, liver, pancreas, prostate, or bone marrow. Within 5-8 h after adenoviral GFP injection, the fluorescence of the expressed GFP in brain and liver became visible, and whole-body images were recorded at video rates. The GFP fluorescence continued to increase for at least 12 h and remained detectable in liver for up to 4 months. The system's rapidity of image acquisition makes it capable of real-time recording. It requires neither exogenous contrast agents, radioactive substrates, nor long processing times. The method requires only that the expressed gene or promoter be fused or operatively linked to GFP. A comparatively modest investment allows the study of the therapeutic and diagnostic potential of suitably tagged genes in relatively opaque organisms.

[1]  David K. Stevenson,et al.  Bioluminescent indicators in living mammals , 1998, Nature Medicine.

[2]  J. Bennett,et al.  Real-time, noninvasive in vivo assessment of adeno-associated virus-mediated retinal transduction. , 1997, Investigative ophthalmology & visual science.

[3]  Y. Yamazaki,et al.  In vivo gene transfer to mouse spermatogenic cells using green fluorescent protein as a marker. , 2000, The Journal of experimental zoology.

[4]  R. Burgeson,et al.  In vivo detection of human vascular endothelial growth factor promoter activity in transgenic mouse skin. , 2000, The American journal of pathology.

[5]  M S Feld,et al.  Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Anna Moore,et al.  In vivo magnetic resonance imaging of transgene expression , 2000, Nature Medicine.

[7]  Scott E. Fraser,et al.  In vivo visualization of gene expression using magnetic resonance imaging , 2000, Nature Biotechnology.

[8]  B R Masters,et al.  Multiphoton Excitation Microscopy of In Vivo Human Skin: Functional and Morphological Optical Biopsy Based on Three‐Dimensional Imaging, Lifetime Measurements and Fluorescence Spectroscopy a , 1998, Annals of the New York Academy of Sciences.

[9]  Krzysztof P Bobinski,et al.  Seeing is believing: Non‐invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography , 2000, Journal of neuroscience research.

[10]  S G Demos,et al.  Advances in Optical Imaging of Biomedical Media a , 1997, Annals of the New York Academy of Sciences.

[11]  R R Alfano,et al.  Time‐Resolved and Nonlinear Optical Imaging for Medical Applications a , 1998, Annals of the New York Academy of Sciences.

[12]  H. Shimada,et al.  Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R G Blasberg,et al.  Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. , 1996, Cancer research.

[14]  S. Cherry,et al.  Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. , 1999, Proceedings of the National Academy of Sciences of the United States of America.