Creating bio-inspired hierarchical 3D–2D photonic stacks via planar lithography on self-assembled inverse opals

Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top–down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top–down and bottom–up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top–down and bottom–up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D–2D photonic crystal devices.

[1]  Kristel Michielsen,et al.  Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales , 2012, Interface Focus.

[2]  D. Tsai,et al.  Micromachined tunable metamaterials: a review , 2012 .

[3]  Joanna Aizenberg,et al.  Combinatorial wetting in colour: an optofluidic nose. , 2012, Lab on a chip.

[4]  Joanna Aizenberg,et al.  Wetting in color: colorimetric differentiation of organic liquids with high selectivity. , 2012, ACS nano.

[5]  Joanna Aizenberg,et al.  Encoding complex wettability patterns in chemically functionalized 3D photonic crystals. , 2011, Journal of the American Chemical Society.

[6]  N. M. Russell,et al.  Effect of vacuum ultraviolet and ultraviolet irradiation on mobile charges in the bandgap of low-k-porous organosilicate dielectrics , 2011 .

[7]  Lingling Tang,et al.  High-Q hybrid 3D-2D slab-3D photonic crystal microcavity. , 2010, Optics letters.

[8]  Andreas Stein,et al.  Tunable Colors in Opals and Inverse Opal Photonic Crystals , 2010 .

[9]  M. Lončar,et al.  Design and focused ion beam fabrication of single crystal diamond nanobeam cavities , 2010, 1008.1431.

[10]  Joanna Aizenberg,et al.  Assembly of large-area, highly ordered, crack-free inverse opal films , 2010, Proceedings of the National Academy of Sciences.

[11]  J. Rogers,et al.  Multidimensional Architectures for Functional Optical Devices , 2010, Advanced materials.

[12]  F. Jonsson,et al.  Site‐Selective Self‐Assembly of Colloidal Photonic Crystals , 2009 .

[13]  Hiroshi Fudouzi,et al.  Flexible Polymer Colloidal‐Crystal Lasers with a Light‐Emitting Planar Defect , 2007 .

[14]  F. Jonsson,et al.  Towards Si-based photonic circuits : Integrating photonic crystals in silicon-on-insulator platforms , 2007 .

[15]  Hernán Míguez,et al.  Building Nanocrystalline Planar Defects within Self‐Assembled Photonic Crystals by Spin‐Coating , 2006 .

[16]  M. Wegener,et al.  3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing. , 2006, Optics letters.

[17]  A. Chen,et al.  Incorporation of Point Defects into Self‐Assembled Three‐Dimensional Colloidal Crystals , 2005 .

[18]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[19]  G. Ozin,et al.  Photochemically and thermally tunable planar defects in colloidal photonic crystals. , 2005, Journal of the American Chemical Society.

[20]  A. Chutinan,et al.  Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  B. Hatton,et al.  Past, Present, and Future of Periodic Mesoporous OrganosilicasThe PMOs , 2005 .

[22]  A. Gopinath,et al.  Self-assembled photonic crystal waveguides , 2005, IEEE Photonics Technology Letters.

[23]  Sven Matthias,et al.  Large‐Area Three‐Dimensional Structuring by Electrochemical Etching and Lithography , 2004 .

[24]  Shinpei Ogawa,et al.  Control of Light Emission by 3D Photonic Crystals , 2004, Science.

[25]  Cefe López,et al.  Engineered Planar Defects Embedded in Opals , 2004 .

[26]  Isabelle Rodriguez,et al.  Dielectric Planar Defects in Colloidal Photonic Crystal Films , 2004 .

[27]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[28]  Alongkarn Chutinan,et al.  Diffractionless flow of light in all-optical microchips. , 2003, Physical review letters.

[29]  Andreas Stein,et al.  Optical properties of inverse opal photonic crystals , 2002 .

[30]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[31]  A. Sayari,et al.  Periodic Mesoporous Silica-Based Organic−Inorganic Nanocomposite Materials , 2001 .

[32]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[33]  Younan Xia,et al.  Monodispersed Colloidal Spheres: Old Materials with New Applications , 2000 .

[34]  David J. Pine,et al.  Ordered Macroporous Materials by Colloidal Assembly: A Possible Route to Photonic Bandgap Materials , 1999 .

[35]  Seth R. Marder,et al.  Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication , 1999, Nature.

[36]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[37]  F. Meldrum,et al.  The Colloid Chemical Approach to Nanostructured Materials , 1995 .

[38]  Paul V. Braun,et al.  Embedded cavities and waveguides in three-dimensional silicon photonic crystals , 2008 .

[39]  R. Ruel,et al.  Template-directed colloidal crystallization , 1997, Nature.

[40]  Interface Focus , 2022 .