Algorithmic innovations in extended unbiased FIR filtering of nonlinear models

Two algorithms of extended unbiased FIR (EFIR) filtering are proposed for nonlinear state estimation. The first algorithm is basic and the second one employs the nonlinear-to-linear observation conversion obtained by the batch EFIR filter with minimum memory. Unlike the extended Kalman filter (EKF), both EFIR algorithms ignore the noise statistics and demonstrate better robustness, but require the optimal horizon. Applications are given for robot indoor self-localization utilizing radio frequency identification tags.

[1]  Kiyoshi Komoriya,et al.  Position estimation of a mobile robot using optical fiber gyroscope (OFG) , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[2]  F. Daum Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.

[3]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[4]  Stephen P. Boyd,et al.  Receding Horizon Control , 2011, IEEE Control Systems.

[5]  Myo Taeg Lim,et al.  Horizon group shift FIR filter: Alternative nonlinear filter using finite recent measurements , 2014 .

[6]  W. Kwon,et al.  Receding Horizon Control: Model Predictive Control for State Models , 2005 .

[7]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[8]  Harold W. Sorenson,et al.  On the development of practical nonlinear filters , 1974, Inf. Sci..

[9]  Yuriy S. Shmaliy,et al.  An Iterative Kalman-Like Algorithm Ignoring Noise and Initial Conditions , 2011, IEEE Transactions on Signal Processing.

[10]  Yuriy S. Shmaliy,et al.  Linear Optimal FIR Estimation of Discrete Time-Invariant State-Space Models , 2010, IEEE Transactions on Signal Processing.

[11]  Yuriy S. Shmaliy,et al.  Suboptimal FIR Filtering of Nonlinear Models in Additive White Gaussian Noise , 2012, IEEE Transactions on Signal Processing.

[12]  Henry Cox,et al.  On the estimation of state variables and parameters for noisy dynamic systems , 1964 .

[13]  F. Daum Exact finite dimensional nonlinear filters , 1985, 1985 24th IEEE Conference on Decision and Control.

[14]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[15]  Bruce P. Gibbs,et al.  Advanced Kalman Filtering, Least-Squares and Modeling: A Practical Handbook , 2011 .

[16]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[17]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[18]  Hisashi Tanizaki,et al.  Nonlinear filters , 1993 .

[19]  Yuriy S. Shmaliy,et al.  Optimal Memory for Discrete-Time FIR Filters in State-Space , 2014, IEEE Trans. Signal Process..

[20]  N. F. Toda,et al.  Divergence in the Kalman Filter , 1967 .

[21]  Yuriy S. Shmaliy,et al.  An approach to nonlinear state estimation using extended FIR filtering , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).