Integrative Models for Understanding the Structural Basis of Regional Mechanical Dysfunction in Ischemic Myocardium

[1]  A. McCulloch,et al.  Regional Myocardial Perfusion and Mechanics: A Model-Based Method of Analysis , 1998, Annals of Biomedical Engineering.

[2]  F. Prinzen,et al.  Discrepancies between myocardial blood flow and fiber shortening in the ischemic border zone as assessed with video mapping of epicardial deformation , 1989, Pflügers Archiv.

[3]  A. McCulloch,et al.  Three-dimensional mechanics of myocardial contraction: mechanisms of transverse systolic stress , 1999 .

[4]  J. Armour Myocardial ischaemia and the cardiac nervous system. , 1999, Cardiovascular research.

[5]  Lionel H. Opie,et al.  Heart Physiology: From Cell to Circulation , 2003 .

[6]  F. Yin,et al.  A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. , 1998, Journal of biomechanical engineering.

[7]  I. Amende,et al.  Intracellular calcium dynamics in mouse model of myocardial stunning. , 1998, American journal of physiology. Heart and circulatory physiology.

[8]  E. Braunwald,et al.  Medical and cellular implications of stunning, hibernation, and preconditioning: an NHLBI workshop. , 1998, Circulation.

[9]  P. Hunter,et al.  Modelling the mechanical properties of cardiac muscle. , 1998, Progress in biophysics and molecular biology.

[10]  A. McCulloch,et al.  Flow-function relations during graded coronary occlusions in the dog: effects of transmural location and segment orientation. , 1998, Cardiovascular research.

[11]  R. Hodges,et al.  Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts: identification of degradation products and effects on the pCa-force relation. , 1998, Circulation research.

[12]  H. E. Keurs,et al.  Dynamics of viscoelastic properties of rat cardiac sarcomeres during the diastolic interval: involvement of Ca2+ , 1997, The Journal of physiology.

[13]  A D McCulloch,et al.  Biaxial mechanics of the passively overstretched left ventricle. , 1997, The American journal of physiology.

[14]  D. Atar,et al.  Role of troponin I proteolysis in the pathogenesis of stunned myocardium. , 1997, Circulation research.

[15]  N. Westerhof,et al.  How cardiac contraction affects the coronary vasculature. , 1997, Advances in experimental medicine and biology.

[16]  EduardoMarbán,et al.  Selective Effects of Oxygen Free Radicals on Excitation-Contraction Coupling in Ventricular Muscle , 1996 .

[17]  E. Marbán,et al.  Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle. Implications for the mechanism of stunned myocardium. , 1996, Circulation.

[18]  P J Hunter,et al.  A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II--Prolate spheroidal coordinates. , 1996, Journal of biomechanical engineering.

[19]  A D McCulloch,et al.  A three-dimensional finite element method for large elastic deformations of ventricular myocardium: I--Cylindrical and spherical polar coordinates. , 1996, Journal of biomechanical engineering.

[20]  M. Thames,et al.  REFLEXES MEDIATED BY CARDIAC SYMPATHETIC AFFERENTS DURING MYOCARDIAL ISCHAEMIA: ROLE OF ADENOSINE , 1996, Clinical and experimental pharmacology & physiology.

[21]  Yongge Liu,et al.  Intrinsic myofilament alterations underlying the decreased contractility of stunned myocardium. A consequence of Ca2+-dependent proteolysis? , 1996, Circulation research.

[22]  R S Reneman,et al.  Regional wall mechanics in the ischemic left ventricle: numerical modeling and dog experiments. , 1996, The American journal of physiology.

[23]  A. McCulloch,et al.  Finite element stress analysis of left ventricular mechanics in the beating dog heart. , 1995, Journal of biomechanics.

[24]  D. Atar,et al.  Relationship between intracellular calcium and contractile force in stunned myocardium. Direct evidence for decreased myofilament Ca2+ responsiveness and altered diastolic function in intact ventricular muscle. , 1995, Circulation research.

[25]  A D McCulloch,et al.  Gradients of epicardial strain across the perfusion boundary during acute myocardial ischemia. , 1994, The American journal of physiology.

[26]  A. McCulloch,et al.  Contribution of collagen matrix to passive left ventricular mechanics in isolated rat hearts. , 1994, The American journal of physiology.

[27]  S. Birkeland,et al.  Non-uniform recovery of performance in stunned myocardium evaluated by two-dimensional sonomicrometry. , 1993, Acta physiologica Scandinavica.

[28]  T. Ehring,et al.  Diastolic dysfunction of stunned myocardium. , 1991, The American journal of cardiovascular pathology.

[29]  A D McCulloch,et al.  Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog. , 1993, Journal of biomechanics.

[30]  A. Young,et al.  Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization--a model-based approach. , 1992, Radiology.

[31]  D. Glower,et al.  Effects of arterial hypertension on myocardial recovery after ischemic injury. , 1992, The American journal of physiology.

[32]  E. Sonnenblick,et al.  Collagen Loss in the Stunned Myocardium , 1992, Circulation.

[33]  A. Sinusas,et al.  Influence of subendocardial ischemia on transmural myocardial function. , 1990, The American journal of physiology.

[34]  E. Marbán,et al.  Cellular mechanisms of myocardial stunning. , 1992, Annual review of physiology.

[35]  K. Gallagher,et al.  Effects of nontransmural ischemia on inner and outer wall thickening in the canine left ventricle. , 1991, American heart journal.

[36]  P. Hunter,et al.  Mathematical model of geometry and fibrous structure of the heart. , 1991, The American journal of physiology.

[37]  R. Kloner,et al.  Stunned myocardium and myocardial collagen damage: differential effects of single and repeated occlusions. , 1991, American heart journal.

[38]  A. McCulloch,et al.  Passive material properties of intact ventricular myocardium determined from a cylindrical model. , 1991, Journal of biomechanical engineering.

[39]  J. Covell,et al.  Transmural myocardial deformation in the ischemic canine left ventricle. , 1991, Circulation research.

[40]  R. Bolli Mechanism of Myocardial “Stunning” , 1990, Circulation.

[41]  V. P. Chacko,et al.  Excitation-contraction coupling in postischemic myocardium. Does failure of activator Ca2+ transients underlie stunning? , 1990, Circulation research.

[42]  R. Kloner,et al.  What factors predict recovery of contractile function in the canine model of the stunned myocardium? , 1989, The American journal of cardiology.

[43]  J. Thornby,et al.  Nonuniform transmural recovery of contractile function in stunned myocardium. , 1989, The American journal of physiology.

[44]  J. Canty Coronary Pressure‐Function and Steady‐State Pressure‐Flow Relations During Autoregulation in the Unanesthetized Dog , 1988, Circulation research.

[45]  W. Lew,et al.  Functional consequences of acute anterior vs. posterior wall ischemia in canine left ventricles. , 1988, The American journal of physiology.

[46]  P. O’Neill,et al.  Time course and determinants of recovery of function after reversible ischemia in conscious dogs. , 1988, The American journal of physiology.

[47]  E. Sonnenblick,et al.  Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional ("stunned") but viable myocardium. , 1987, Journal of the American College of Cardiology.

[48]  R. Kloner,et al.  Diastolic abnormalities of postischemic "stunned" myocardium. , 1987, The American journal of cardiology.

[49]  K. Gallagher,et al.  Subendocardial segment length shortening at lateral margins of ischemic myocardium in dogs. , 1987, The American journal of physiology.

[50]  H. Weisman,et al.  Myocardial infarct expansion, infarct extension, and reinfarction: pathophysiologic concepts. , 1987, Progress in cardiovascular diseases.

[51]  K. Gallagher,et al.  Effect of aortic constriction on the functional border zone. , 1987, The American journal of physiology.

[52]  D. Allen,et al.  Myocardial contractile function during ischemia and hypoxia. , 1987, Circulation research.

[53]  K. Gallagher,et al.  The Distribution of Functional Impairment across the Lateral Border of Acutely Ischemic Myocardium , 1986, Circulation research.

[54]  P. Serruys,et al.  Effect of coronary occlusion during percutaneous transluminal angioplasty in humans on left ventricular chamber stiffness and regional diastolic pressure-radius relations. , 1986, Journal of the American College of Cardiology.

[55]  H. Suga,et al.  Left ventricular regional work from wall tension-area loop in canine heart. , 1986, The American journal of physiology.

[56]  L. Opie,et al.  Regional myocardial ischemia: characterization of temporal, transmural and lateral flow interfaces in the porcine heart. , 1986, The Canadian journal of cardiology.

[57]  R. Millard,et al.  Defining the mechanical border zone: a study in the pig heart. , 1985, The American journal of physiology.

[58]  J. Weiss,et al.  Impaired thickening of nonischemic myocardium during acute regional ischemia in the dog. , 1985, Circulation.

[59]  J. Covell,et al.  Mechanisms of Augmented Segment Shortening in Nonischemic Areas during Acute Ischemia of the Canine Left Ventricle , 1985, Circulation research.

[60]  J. Longhurst Cardiac receptors: their function in health and disease. , 1984, Progress in cardiovascular diseases.

[61]  K. Gallagher,et al.  Decreased systolic wall thickening in myocardium adjacent to ischemic zones in conscious swine during brief coronary artery occlusion. , 1984, American heart journal.

[62]  T Arts,et al.  Fiber shortening in the inner layers of the left ventricular wall as assessed from epicardial deformation during normoxia and ischemia. , 1984, Journal of biomechanics.

[63]  D. Harlan,et al.  Transitional Blood Flow Zones between Ischemic and Nonischemic Myocardium in the Awake Dog: Analysis Based on Distribution of the Intramural Vasculature , 1983, Circulation research.

[64]  A. Malliani,et al.  Cardiovascular reflexes mediated by sympathetic afferent fibers. , 1983, Journal of the autonomic nervous system.

[65]  E. Braunwald,et al.  The Stunned Myocardium: Prolonged, Postischemic Ventricular Dysfunction , 1982, Circulation.

[66]  F. Yin,et al.  Ventricular wall stress. , 1981, Circulation research.

[67]  D. Yellon,et al.  Characterization of the lateral interface between normal and ischemic tissue in the canine heart during evolving myocardial infarction. , 1981, The American journal of cardiology.

[68]  R. Helfant,et al.  The Relationship between Myocardial Blood Flow and Contraction by Myocardial Layer in the Canine Left Ventricle during Ischemia , 1981, Circulation research.

[69]  J. Ross,et al.  Significance of Regional Wall Thickening Abnormalities Relative to Transmural Myocardial Perfusion in Anesthetized Dogs , 1980, Circulation.

[70]  D K Bogen,et al.  An Analysis of the Mechanical Disadvantage of Myocardial Infarction in the Canine Left Ventricle , 1980, Circulation research.

[71]  W Grossman,et al.  Cardiac hypertrophy: useful adaptation or pathologic process? , 1980, The American journal of medicine.

[72]  S. Vatner Correlation between Acute Reductions in Myocardial Blood Flow and Function in Conscious Dogs , 1980, Circulation research.

[73]  N Westerhof,et al.  Measurement of left ventricular wall stress. , 1980, Cardiovascular research.

[74]  A W Wiegner,et al.  Weak and strong myocardium in series: implications for segmental dysfunction. , 1978, The American journal of physiology.

[75]  I. Leusen,et al.  Depression of regional blood flow and wall thickening after brief coronary occlusions. , 1978, The American journal of physiology.

[76]  M. Frick Regional myocardial perfusion during ischemia. , 1977, Circulation.

[77]  D. Hearse Reperfusion of the ischemic myocardium. , 1977, Journal of molecular and cellular cardiology.

[78]  G. Diamond,et al.  Functional abnormalities in nonoccluded regions of myocardium after experimental coronary occlusion. , 1976, The American journal of cardiology.

[79]  R. Kerber,et al.  Correlation between Echocardiographically Demonstrated Segmental Dyskinesis and Regional Myocardial Perfusion , 1975, Circulation.

[80]  J. Tyberg,et al.  An Analysis of Segmental Ischemic Dysfunction Utilizing the Pressure‐Length Loop , 1974, Circulation.

[81]  J. Downey,et al.  Effects of Myocardial Strains on Coronary Blood Flow , 1974, Circulation research.

[82]  W. Parmley,et al.  In vitro length-tension relations of human ventricular aneurysms. Relation of stiffness to mechanical disadvantage. , 1973, The American journal of cardiology.

[83]  D. D. Streeter,et al.  Engineering Mechanics for Successive States in Canine Left Ventricular Myocardium: II. Fiber Angle and Sarcomere Length , 1973, Circulation research.

[84]  J. Tyberg,et al.  In‐Vitro Studies of Myocardial Asynchrony and Regional Hypoxia , 1969, Circulation research.

[85]  C. Wiggers,et al.  THE EFFECT OF CORONARY OCCLUSION ON MYOCARDIAL CONTRACTION , 1935 .