Model reduction using the Vorobyev moment problem

[1]  Martin Vohralík,et al.  A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..

[2]  Petr Tichý,et al.  On sensitivity of Gauss–Christoffel quadrature , 2007, Numerische Mathematik.

[3]  G. Meurant The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .

[4]  G. Meurant,et al.  The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.

[5]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[6]  Lothar Reichel,et al.  Quadrature Rules Based on the Arnoldi Process , 2005, SIAM J. Matrix Anal. Appl..

[7]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[8]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[9]  Dennis C. Smolarski,et al.  Addendum to: Why Gaussian Quadrature in the Complex Plane? , 2001, Numerical Algorithms.

[10]  M. Arioli,et al.  Stopping criteria for iterative methods:¶applications to PDE's , 2001 .

[11]  M. Eiermann,et al.  Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.

[12]  Dennis C. Smolarski,et al.  Why Gaussian quadrature in the complex plane? , 2001, Numerical Algorithms.

[13]  W. Chew,et al.  Numerical simulation methods for rough surface scattering , 2001 .

[14]  Nikil D. Dutt,et al.  System and architecture-level power reduction of microprocessor-based communication and multi-media applications , 2000, IEEE/ACM International Conference on Computer Aided Design. ICCAD - 2000. IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140).

[15]  M. Arioli,et al.  A stopping criterion for the conjugate gradient algorithm in a finite element method framework , 2000, Numerische Mathematik.

[16]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[17]  G. Golub,et al.  Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .

[18]  B. Fischer Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .

[19]  W. Gautschi Orthogonal polynomials: applications and computation , 1996, Acta Numerica.

[20]  Gene H. Golub,et al.  Estimates in quadratic formulas , 1994, Numerical Algorithms.

[21]  R. Freund,et al.  On Adaptive Weighted Polynomial Preconditioning for Hermitian Positive Definite Matrices , 1994, SIAM J. Sci. Comput..

[22]  P. Davis,et al.  Methods of Numerical Integration , 1985 .

[23]  Herman Heine Goldstine,et al.  A History of Numerical Analysis from the 16th through the 19th Century. , 1976 .

[24]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[25]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[26]  A. Wathen,et al.  APPROXIMATION OF THE SCATTERING AMPLITUDE AND LINEAR SYSTEMS , 2008 .

[27]  M. Vohralík,et al.  A POSTERIORI ERROR ESTIMATES INCLUDING ALGEBRAIC ERROR : COMPUTABLE UPPER BOUNDS AND STOPPING CRITERIA FOR ITERATIVE SOLVERS , 2008 .

[28]  Gene H. Golub,et al.  Matrices, moments, and quadrature , 2007, Milestones in Matrix Computation.

[29]  Milestones in Matrix Computation - Selected Works of Gene H. Golub, with Commentaries , 2007, Milestones in Matrix Computation.

[30]  Andrew J. Wathen,et al.  Stopping criteria for iterations in finite element methods , 2005, Numerische Mathematik.

[31]  Z. Strakos,et al.  On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .

[32]  Walter Gautschi,et al.  THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND (NUMERICAL) LINEAR ALGEBRA — A TRIBUTE TO GENE H. GOLUB , 2002 .

[33]  W. Gautschi,et al.  THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND ( NUMERICAL ) LINEAR ALGEBRA — A TRIBUTE TO GENE , 2002 .

[34]  Claude Brezinski,et al.  Projection methods for systems of equations , 1997 .

[35]  Gene H. Golub,et al.  Matrix Computation and the Theory of Moments , 1995 .

[36]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[37]  R. W. Freund,et al.  Gauss Quadratures Associated with the Arnoldi Process and the Lanczos Algorithm , 1993 .

[38]  Gene H. Golub,et al.  Linear algebra for large scale and real-time applications , 1993 .

[39]  W. Gautschi A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .

[40]  Stefan Rolewicz,et al.  On a problem of moments , 1968 .

[41]  I︠u︡. V. Vorobʹev Method of moments in applied mathematics , 1965 .

[42]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[43]  An iterative method for the solution of the eigenvalue problem of linear differential and integral , 1950 .

[44]  M. Stieltjes Variétés. Note sur quelques formules pour l'évaluation de certaines intégrales , 2022 .

[45]  T. Stieltjes,et al.  Quelques recherches sur la théorie des quadratures dites mécaniques , 1884 .

[46]  E. B. Christoffel,et al.  Über die Gaußische Quadratur und eine Verallgemeinerung derselben. , 1858 .

[47]  C. Jacobi,et al.  Ueber Gauß neue Methode, die Werthe der Integrale näherungsweise zu finden. , 1826 .