Model reduction using the Vorobyev moment problem
暂无分享,去创建一个
[1] Martin Vohralík,et al. A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..
[2] Petr Tichý,et al. On sensitivity of Gauss–Christoffel quadrature , 2007, Numerische Mathematik.
[3] G. Meurant. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .
[4] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.
[5] Athanasios C. Antoulas,et al. Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.
[6] Lothar Reichel,et al. Quadrature Rules Based on the Arnoldi Process , 2005, SIAM J. Matrix Anal. Appl..
[7] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[8] Z. Bai. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .
[9] Dennis C. Smolarski,et al. Addendum to: Why Gaussian Quadrature in the Complex Plane? , 2001, Numerical Algorithms.
[10] M. Arioli,et al. Stopping criteria for iterative methods:¶applications to PDE's , 2001 .
[11] M. Eiermann,et al. Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.
[12] Dennis C. Smolarski,et al. Why Gaussian quadrature in the complex plane? , 2001, Numerical Algorithms.
[13] W. Chew,et al. Numerical simulation methods for rough surface scattering , 2001 .
[14] Nikil D. Dutt,et al. System and architecture-level power reduction of microprocessor-based communication and multi-media applications , 2000, IEEE/ACM International Conference on Computer Aided Design. ICCAD - 2000. IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140).
[15] M. Arioli,et al. A stopping criterion for the conjugate gradient algorithm in a finite element method framework , 2000, Numerische Mathematik.
[16] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[17] G. Golub,et al. Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .
[18] B. Fischer. Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .
[19] W. Gautschi. Orthogonal polynomials: applications and computation , 1996, Acta Numerica.
[20] Gene H. Golub,et al. Estimates in quadratic formulas , 1994, Numerical Algorithms.
[21] R. Freund,et al. On Adaptive Weighted Polynomial Preconditioning for Hermitian Positive Definite Matrices , 1994, SIAM J. Sci. Comput..
[22] P. Davis,et al. Methods of Numerical Integration , 1985 .
[23] Herman Heine Goldstine,et al. A History of Numerical Analysis from the 16th through the 19th Century. , 1976 .
[24] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[25] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[26] A. Wathen,et al. APPROXIMATION OF THE SCATTERING AMPLITUDE AND LINEAR SYSTEMS , 2008 .
[27] M. Vohralík,et al. A POSTERIORI ERROR ESTIMATES INCLUDING ALGEBRAIC ERROR : COMPUTABLE UPPER BOUNDS AND STOPPING CRITERIA FOR ITERATIVE SOLVERS , 2008 .
[28] Gene H. Golub,et al. Matrices, moments, and quadrature , 2007, Milestones in Matrix Computation.
[29] Milestones in Matrix Computation - Selected Works of Gene H. Golub, with Commentaries , 2007, Milestones in Matrix Computation.
[30] Andrew J. Wathen,et al. Stopping criteria for iterations in finite element methods , 2005, Numerische Mathematik.
[31] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[32] Walter Gautschi,et al. THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND (NUMERICAL) LINEAR ALGEBRA — A TRIBUTE TO GENE H. GOLUB , 2002 .
[33] W. Gautschi,et al. THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND ( NUMERICAL ) LINEAR ALGEBRA — A TRIBUTE TO GENE , 2002 .
[34] Claude Brezinski,et al. Projection methods for systems of equations , 1997 .
[35] Gene H. Golub,et al. Matrix Computation and the Theory of Moments , 1995 .
[36] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[37] R. W. Freund,et al. Gauss Quadratures Associated with the Arnoldi Process and the Lanczos Algorithm , 1993 .
[38] Gene H. Golub,et al. Linear algebra for large scale and real-time applications , 1993 .
[39] W. Gautschi. A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .
[40] Stefan Rolewicz,et al. On a problem of moments , 1968 .
[41] I︠u︡. V. Vorobʹev. Method of moments in applied mathematics , 1965 .
[42] F. Gantmacher,et al. Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .
[43] An iterative method for the solution of the eigenvalue problem of linear differential and integral , 1950 .
[44] M. Stieltjes. Variétés. Note sur quelques formules pour l'évaluation de certaines intégrales , 2022 .
[45] T. Stieltjes,et al. Quelques recherches sur la théorie des quadratures dites mécaniques , 1884 .
[46] E. B. Christoffel,et al. Über die Gaußische Quadratur und eine Verallgemeinerung derselben. , 1858 .
[47] C. Jacobi,et al. Ueber Gauß neue Methode, die Werthe der Integrale näherungsweise zu finden. , 1826 .