Theoretical prediction of low-density nanoporous frameworks of zinc sulfide based on ZnnSn (n = 12, 16) nanocaged clusters

Using density functional theory calculations, the possibility of the formation of different low-density framework materials based on highly stable ZnnSn (n = 12, 16) clusters is systematically investigated. Our cluster building blocks, which have high symmetries and large HOMO–LUMO gaps, are predicted to be strongly energetically preferred. Via the coalescence of ZnnSn (n = 12, 16) building blocks, many kinds of low-density ZnS framework materials of varying porosity are thus proposed. All the frameworks differ from known synthesized materials and are predicted to be energetically stable at room temperature. These new materials are found to be semiconductors with wide bandgaps, indicating that they may have promise for optoelectronic applications. Because of their nanoporous structure, they could be used for gas storage, heterogeneous catalysis, and filtration and so on. The insights we obtained here will be helpful for extending the range of properties and applications of ZnS materials.

[1]  Jena,et al.  Assembling crystals from clusters. , 1992, Physical review letters.

[2]  S. Woodley,et al.  Crystal structure prediction from first principles. , 2008, Nature materials.

[3]  Donald W. Breck,et al.  Zeolite Molecular Sieves: Structure, Chemistry, and Use , 1974 .

[4]  Paul S Weiss,et al.  Cluster-assembled materials. , 2009, ACS nano.

[5]  J. Veciana,et al.  Old materials with new tricks: multifunctional open-framework materials. , 2007, Chemical Society reviews.

[6]  Zhongqiao Hu,et al.  Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: from zeolites, metal-organic frameworks to protein crystals. , 2011, Chemical Society reviews.

[7]  Benjamin Gilbert,et al.  Extracellular Proteins Limit the Dispersal of Biogenic Nanoparticles , 2007, Science.

[8]  Francesc Illas,et al.  Ultralow-density nanocage-based metal-oxide polymorphs. , 2007, Physical review letters.

[9]  F. Baletto,et al.  Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects , 2005 .

[10]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[11]  J. BelBruno,et al.  Small, nonstoichiometric zinc sulfide clusters. , 2005, The journal of physical chemistry. A.

[12]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[13]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[14]  T. He,et al.  Theoretical models of ZnS nanoclusters and nanotubes: First-principles calculations , 2008 .

[15]  P. N. Day,et al.  Computational Prediction of Structures and Optical Excitations for Nanoscale Ultrasmall ZnS and CdSe Clusters. , 2013, Journal of chemical theory and computation.

[16]  J. BelBruno,et al.  ZnnSm+ cluster production by laser ablation , 2002 .

[17]  A. Mohajeri,et al.  On the optical, electronic, and structural properties of zinc sulfide nanoclusters , 2011 .

[18]  X. López,et al.  Thermally stable solids based on endohedrally doped ZnS clusters. , 2009, Chemistry.

[19]  Cameron J Kepert,et al.  Advanced functional properties in nanoporous coordination framework materials. , 2006, Chemical communications.

[20]  S. Shevlin,et al.  Bubbles and microporous frameworks of silicon carbide. , 2009, Physical chemistry chemical physics : PCCP.

[21]  Anjali Kshirsagar,et al.  First principles results of structural and electronic properties of ZnS clusters , 2012, Bulletin of Materials Science.

[22]  S. Khanna,et al.  Clusters, Superatoms, and Building Blocks of New Materials† , 2009 .

[23]  Y. Qian,et al.  Simultaneous In Situ Formation of ZnS Nanowires in a Liquid Crystal Template by γ-Irradiation , 2001 .

[24]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[25]  S. Woodley,et al.  Modelling nano-clusters and nucleation. , 2010, Physical chemistry chemical physics : PCCP.

[26]  J. M. Matxain,et al.  Small clusters of II-VI materials: Zn i S i , i = 1 – 9 , 2000 .

[27]  C. Catlow,et al.  Structure and properties of ZnS nanoclusters. , 2005, The journal of physical chemistry. B.

[28]  Jon M. Azpiroz,et al.  Modeling ZnS and ZnO Nanostructures: Structural, Electronic, and Optical Properties , 2011 .

[29]  C. Richard A. Catlow,et al.  Computational Evidence of Bubble ZnS Clusters , 2003 .

[30]  Angel Rubio,et al.  Structural and optoelectronic properties of unsaturated ZnO and ZnS nanoclusters , 2012 .

[31]  M J Rosseinsky,et al.  Design, chirality, and flexibility in nanoporous molecule-based materials. , 2005, Accounts of chemical research.

[32]  Avelino Corma,et al.  Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions , 1995 .

[33]  S. Bhattacharyya,et al.  A search for lowest energy structures of ZnS quantum dots: Genetic algorithm tight-binding study. , 2009, The Journal of chemical physics.

[34]  C. Catlow,et al.  Experimental and computational studies of ZnS nanostructures , 2009 .

[35]  Miroslaw Batentschuk,et al.  Silica‐Coated InP/ZnS Nanocrystals as Converter Material in White LEDs , 2008 .

[36]  Pranab Sarkar,et al.  Size-Dependent Properties of Hollow ZnS Nanoclusters , 2008 .

[37]  M. Allendorf,et al.  Metal‐Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials , 2011, Advanced materials.

[38]  A. Mohajeri,et al.  A graph theory study on (ZnS)n (n = 3–10) nanoclusters , 2011 .

[39]  S. Shevlin,et al.  Construction of nano- and microporous frameworks from octahedral bubble clusters. , 2009, Physical chemistry chemical physics : PCCP.

[40]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[41]  Xiaosheng Fang,et al.  Temperature‐Controlled Catalytic Growth of ZnS Nanostructures by the Evaporation of ZnS Nanopowders , 2005 .

[42]  E. Sanville,et al.  Experimental and Computational Study of the ZnnSnand ZnnSn+Clusters , 2005 .

[43]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[44]  Paul S Weiss,et al.  Controlling the band gap energy of cluster-assembled materials. , 2013, Accounts of chemical research.

[45]  F. Illas,et al.  Apparent scarcity of low-density polymorphs of inorganic solids. , 2010, Physical review letters.

[46]  P. B. Venuto Organic Catalysis Over Zeolites: A Perspective on Reaction Paths Within Micropores , 1994 .

[47]  C Richard A Catlow,et al.  ZnS bubble clusters with onion-like structures. , 2004, Chemical communications.

[48]  P. He,et al.  Cluster-assembled materials based on M12N12 (M = Al, Ga) fullerene-like clusters. , 2011, Physical chemistry chemical physics : PCCP.

[49]  P. Wheatley,et al.  Gas storage in nanoporous materials. , 2008, Angewandte Chemie.

[50]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[51]  P. He,et al.  Growth Pattern and Electronic Properties of Cluster-Assembled Material Based on Zn12O12: A Density-Functional Study , 2011 .

[52]  Ayusman Sen,et al.  Cluster-assembled materials: toward nanomaterials with precise control over properties. , 2010, ACS nano.

[53]  C. Catlow,et al.  Computational study of the relative stabilities of ZnS clusters, for sizes between 1 and 4 nm , 2006 .

[54]  R. Snurr New Horizons for the Physical Chemistry of Nanoporous Materials , 2011 .

[55]  P. Jena,et al.  Beyond the Periodic Table of Elements: The Role of Superatoms. , 2013, The journal of physical chemistry letters.

[56]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[57]  Takashi Sekiguchi,et al.  Single‐Crystalline ZnS Nanobelts as Ultraviolet‐Light Sensors , 2009 .

[58]  Sougata Pal,et al.  Size-dependent properties of Zn(m)S(n) clusters: a density-functional tight-binding study. , 2005, The Journal of chemical physics.

[59]  Zhifeng Liu,et al.  From the ZnO Hollow Cage Clusters to ZnO Nanoporous Phases: A First-Principles Bottom-Up Prediction , 2013 .

[60]  X. López,et al.  New Solids Based on B12N12 Fullerenes , 2007 .