Diffusion minimum-Wilcoxon-norm over distributed adaptive networks: Formulation and performance analysis

This paper deals with the development of robust diffusion strategy for wireless sensor networks using minimum-Wilcoxon-norm. The Wilcoxon norm based robust estimation now-a-days has drawn the attention of the signal processing community for its scale equivariant property and simplicity. Exhaustive mathematical analysis has been presented to obtain the proposed diffusion minimum-Wilcoxon-norm (dMWN) algorithm. Steady state performance analysis of the algorithm has also been carried out to show the stability of the proposed method. Asymptotic linearity of rank test 1 is used for the convergence analysis of the proposed method. Extensive simulations have been given to demonstrate the efficacy of the proposed algorithm.

[1]  Ali H. Sayed,et al.  Modeling Bird Flight Formations Using Diffusion Adaptation , 2011, IEEE Transactions on Signal Processing.

[2]  A.H. Sayed,et al.  Distributed Recursive Least-Squares Strategies Over Adaptive Networks , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[3]  Ali H. Sayed,et al.  Dictionary Learning Over Distributed Models , 2014, IEEE Transactions on Signal Processing.

[4]  Ali H. Sayed,et al.  Diffusion LMS Strategies for Distributed Estimation , 2010, IEEE Transactions on Signal Processing.

[5]  Ali H. Sayed,et al.  Distributed Detection Over Adaptive Networks Using Diffusion Adaptation , 2011, IEEE Transactions on Signal Processing.

[6]  Upendra Kumar Sahoo,et al.  QR-based incremental minimum-Wilcoxon-norm strategies for distributed wireless sensor networks , 2012, Signal Process..

[7]  Ali H. Sayed,et al.  Distributed Pareto Optimization via Diffusion Strategies , 2012, IEEE Journal of Selected Topics in Signal Processing.

[8]  Kutluyil Dogancay,et al.  Partial-Update Adaptive Signal Processing: Design Analysis and Implementation , 2008 .

[9]  Ali H. Sayed,et al.  Diffusion Strategies Outperform Consensus Strategies for Distributed Estimation Over Adaptive Networks , 2012, IEEE Transactions on Signal Processing.

[10]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[11]  Ali H. Sayed,et al.  Diffusion recursive least-squares for distributed estimation over adaptive networks , 2008, IEEE Transactions on Signal Processing.

[12]  Ali H. Sayed,et al.  Incremental Adaptive Strategies Over Distributed Networks , 2007, IEEE Transactions on Signal Processing.

[13]  Gonzalo Mateos,et al.  Distributed Recursive Least-Squares: Stability and Performance Analysis , 2011, IEEE Transactions on Signal Processing.

[14]  Magno T. M. Silva,et al.  Distributed estimation in diffusion networks using affine least-squares combiners , 2015, Digit. Signal Process..

[15]  Stergios I. Roumeliotis,et al.  Consensus in Ad Hoc WSNs With Noisy Links—Part II: Distributed Estimation and Smoothing of Random Signals , 2008, IEEE Transactions on Signal Processing.

[16]  Ali H. Sayed,et al.  Fundamentals Of Adaptive Filtering , 2003 .

[17]  Joseph W. McKean,et al.  Robust Analysis of Linear Models , 2004 .

[18]  Ali H. Sayed,et al.  Analysis of Spatial and Incremental LMS Processing for Distributed Estimation , 2011, IEEE Transactions on Signal Processing.

[19]  T. Hettmansperger,et al.  Robust Nonparametric Statistical Methods , 1998 .

[20]  P. Sen,et al.  Theory of rank tests , 1969 .

[21]  Ali H. Sayed,et al.  Diffusion Least-Mean Squares Over Adaptive Networks: Formulation and Performance Analysis , 2008, IEEE Transactions on Signal Processing.

[22]  K. Furutsu,et al.  On the Theory of Amplitude Distribution of Impulsive Random Noise , 1961 .

[23]  Ruggero Carli,et al.  Distributed Kalman filtering based on consensus strategies , 2008, IEEE Journal on Selected Areas in Communications.

[24]  Gregory J. Pottie,et al.  Instrumenting the world with wireless sensor networks , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[25]  Azam Khalili,et al.  Diffusion adaptive networks with imperfect communications: link failure and channel noise , 2014, IET Signal Process..

[26]  Yih-Lon Lin,et al.  Preliminary Study on Wilcoxon Learning Machines , 2008, IEEE Transactions on Neural Networks.

[27]  Jana Jurečková,et al.  Asymptotic Linearity of a Rank Statistic in Regression Parameter , 1969 .

[28]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[29]  Benoît Champagne,et al.  Estimation of Space-Time Varying Parameters Using a Diffusion LMS Algorithm , 2014, IEEE Transactions on Signal Processing.

[30]  Ganapati Panda,et al.  Robust identification using new Wilcoxon least mean square algorithm , 2009 .

[31]  Bernie Mulgrew,et al.  Robust Diffusion LMS over Wireless Sensor Network in Impulsive Noise , 2011 .

[32]  Ali H. Sayed,et al.  Diffusion Adaptation Strategies for Distributed Optimization and Learning Over Networks , 2011, IEEE Transactions on Signal Processing.

[33]  Sang Woo Kim,et al.  Wilcoxon adaptive algorithms for robust identification , 2009 .