Energy consistent algorithms for dynamic finite deformation plasticity

[1]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[2]  P. M. Naghdi,et al.  A general theory of an elastic-plastic continuum , 1965 .

[3]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[4]  P. M. Naghdi,et al.  SOME REMARKS ON ELASTIC-PLASTIC DEFORMATION AT FINITE STRAIN , 1971 .

[5]  J. Mandel Thermodynamics and Plasticity , 1973 .

[6]  P. M. Naghdi,et al.  RESTRICTIONS ON CONSTITUTIVE EQUATIONS OF FINITELY DEFORMED ELASTIC-PLASTIC MATERIALS , 1975 .

[7]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[8]  Thomas J. R. Hughes,et al.  FINITE-ELEMENT METHODS FOR NONLINEAR ELASTODYNAMICS WHICH CONSERVE ENERGY. , 1978 .

[9]  P. M. Naghdi,et al.  A Remark on the Use of the Decomposition F = FeFp in Plasticity , 1980 .

[10]  S. Nemat-Nasser On finite deformation elasto-plasticity , 1982 .

[11]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[12]  R. Asaro,et al.  Micromechanics of Crystals and Polycrystals , 1983 .

[13]  FURTHER CONSTITUTIVE RESULTS IN FINITE PLASTICITY , 1984 .

[14]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[15]  J. C. Simo,et al.  On the computational significance of the intermediate configuration and hyperelastic stress relations in finite deformation elastoplasticity , 1985 .

[16]  Michael Ortiz,et al.  A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations , 1985 .

[17]  J. O. Hallquist,et al.  DYNA3D user's manual: (Nonlinear dynamic analysis of structures in three dimensions): Revision 5 , 1987 .

[18]  Jacob Lubliner,et al.  Normality rules in large-deformation plasticity , 1986 .

[19]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multipli , 1988 .

[20]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. part II: computational aspects , 1988 .

[21]  Klaus-Jürgen Bathe,et al.  A hyperelastic‐based large strain elasto‐plastic constitutive formulation with combined isotropic‐kinematic hardening using the logarithmic stress and strain measures , 1990 .

[22]  M. Ortiz,et al.  Formulation of implicit finite element methods for multiplicative finite deformation plasticity , 1990 .

[23]  J. C. Simo,et al.  Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .

[24]  P. M. Naghdi,et al.  A prescription for the identification of finite plastic strain , 1992 .

[25]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[26]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[27]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[28]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[29]  J. C. Simo,et al.  A priori stability estimates and unconditionally stable product formula algorithms for nonlinear coupled thermoplasticity , 1993 .

[30]  J. C. Simo,et al.  A new energy and momentum conserving algorithm for the non‐linear dynamics of shells , 1994 .

[31]  J. C. Simo,et al.  Non-linear dynamics of three-dimensional rods: Exact energy and momentum conserving algorithms , 1995 .

[32]  Ekkehard Ramm,et al.  Constraint Energy Momentum Algorithm and its application to non-linear dynamics of shells , 1996 .

[33]  M. Crisfield,et al.  Dynamics of 3-D co-rotational beams , 1997 .

[34]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[35]  T. Laursen,et al.  DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .

[36]  Tod A. Laursen,et al.  Energy consistent algorithms for frictional contact problems , 1998 .

[37]  M. A. Crisfield,et al.  An energy‐conserving co‐rotational procedure for the dynamics of shell structures , 1998 .

[38]  F. Armero,et al.  Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .

[39]  Jia Lu,et al.  A general framework for the numerical solution of problems in finite elasto-plasticity , 1998 .

[40]  Ekkehard Ramm,et al.  Generalized Energy–Momentum Method for non-linear adaptive shell dynamics , 1999 .

[41]  F. Armero,et al.  A new dissipative time-stepping algorithm for frictional contact problems: formulation and analysis , 1999 .

[42]  M. Crisfield,et al.  Energy‐conserving and decaying Algorithms in non‐linear structural dynamics , 1999 .

[43]  Oscar Gonzalez,et al.  Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .

[44]  Tod A. Laursen,et al.  A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics , 2001 .

[45]  T. Laursen,et al.  Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework , 2002, International Journal for Numerical Methods in Engineering.