First Community-Wide, Comparative Cross-Linking Mass Spectrometry Study

The number of publications in the field of chemical cross-linking combined with mass spectrometry (XL-MS) to derive constraints for protein three-dimensional structure modeling and to probe protein–protein interactions has increased during the last years. As the technique is now becoming routine for in vitro and in vivo applications in proteomics and structural biology there is a pressing need to define protocols as well as data analysis and reporting formats. Such consensus formats should become accepted in the field and be shown to lead to reproducible results. This first, community-based harmonization study on XL-MS is based on the results of 32 groups participating worldwide. The aim of this paper is to summarize the status quo of XL-MS and to compare and evaluate existing cross-linking strategies. Our study therefore builds the framework for establishing best practice guidelines to conduct cross-linking experiments, perform data analysis, and define reporting formats with the ultimate goal of assisting scientists to generate accurate and reproducible XL-MS results.

Karl Mechtler | Michael J MacCoss | Jürgen Cox | Juri Rappsilber | Ruedi Aebersold | Albert J R Heck | Alex Zelter | Oleg Klykov | Alexander Leitner | Esben Trabjerg | Claudio Iacobucci | Michael Götze | Andrea Sinz | Marina Gay | Robert L Moritz | Michael R Hoopmann | Fabio C Gozzo | Juan D Chavez | James E Bruce | Christoph Borchers | Richard A Scheltema | Gianluca Degliesposti | Marta Vilaseca | Franz Herzog | Frank Sobott | Lan Huang | Nir Kalisman | Evgeniy Petrotchenko | Carla Schmidt | Florian Stengel | Christine Piotrowski | Francisco Gomes-Neto | Nagarjuna Nagaraj | Fan Liu | Meng-Qiu Dong | Stéphane Claverol | David C Schriemer | Kasper D Rand | Cecilia Emanuelsson | Philip Andrews | Nicolas I. Brodie | Stéphane Chaignepain | Nufar Edinger | Craig Gutierrez | Caroline Haupt | Zdeněk Kukačka | Ravit Mesika | Victor Nesati | Matthias Pelzing | Lolita Piersimoni | Tara Pukala | Dana Reichmann | Chris P. Sarnowski | Moriya Slavin | Victor Solis-Mezarino | Heike Stephanowitz | Michael Trnka | Rosa Viner | Yufei Xiang | Daniel Ziemianowicz | Petr Novák | Yong Cao | Yi Shi | R. Aebersold | J. Cox | M. MacCoss | R. Moritz | P. Andrews | T. Davis | M. Dong | A. Heck | K. Mechtler | F. Herzog | A. Leitner | F. Gozzo | G. Degliesposti | Nagarjuna Nagaraj | Nir Kalisman | C. Emanuelsson | R. Scheltema | Lan Huang | J. Rappsilber | C. Borchers | Michael Götze | M. Trnka | Florian Stengel | M. Hoopmann | J. Bruce | Carolin Sailer | C. Iacobucci | C. Piotrowski | A. Sinz | D. Reichmann | T. Pukala | M. Pelzing | F. Sobott | D. Schriemer | F. Liu | J. Skehel | A. Zelter | Nufar Edinger | S. Claverol | Victor Solis-Mezarino | K. Rand | Christian E Stieger | E. Petrotchenko | Carla Schmidt | M. Gay | M. Vilaseca | Francis J. O’Reilly | R. Viner | Şule Yılmaz | Z. Kukačka | P. Novák | J. Chavez | M. Plasencia | O. Klykov | Daniel S. Ziemianowicz | H. Stephanowitz | Manolo Plasencia | Bruno C. Amaral | K. Bernfur | Yong Cao | S. Chaignepain | F. Gomes-Neto | Craig B Gutierrez | Caroline Haupt | Ravit Mesika | Victor Nesati | A. Neves-Ferreira | R. Ninnis | Lolita Piersimoni | Yi Shi | Moriya Slavin | Esben Trabjerg | Yufei Xiang | J Mark Skehel | Carolin Sailer | Katja Bernfur | Michael J. Trnka | Bruno C Amaral | Nicolas I Brodie | Trisha Davis | Ana G C Neves-Ferreira | Robert Ninnis | Francis J O'Reilly | Chris P Sarnowski | Sule Yilmaz | Fan Liu | R. Mesika | Craig B. Gutierrez | Christian E. Stieger | Franz Herzog | Manolo Plasencia | Dana Reichmann

[1]  Jan C. Refsgaard,et al.  CrossWork: software-assisted identification of cross-linked peptides. , 2011, Journal of proteomics.

[2]  Martin Eisenacher,et al.  Proteomics Standards Initiative: Fifteen Years of Progress and Future Work , 2017, Journal of proteome research.

[3]  Martin Kussmann,et al.  Chemical cross‐linking with thiol‐cleavable reagents combined with differential mass spectrometric peptide mapping—A novel approach to assess intermolecular protein contacts , 2000, Protein science : a publication of the Protein Society.

[4]  C. Borchers,et al.  DXMSMS Match Program for Automated Analysis of LC‐MS/MS Data Obtained Using Isotopically Coded CID‐Cleavable Cross‐Linking Reagents , 2014, Current protocols in bioinformatics.

[5]  Albert J R Heck,et al.  Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry , 2015, Nature Methods.

[6]  Lennart Martens,et al.  The minimum information about a proteomics experiment (MIAPE) , 2007, Nature Biotechnology.

[7]  Robert E. Kearney,et al.  A HUPO test sample study reveals common problems in mass spectrometry-based proteomics , 2009, Nature Methods.

[8]  Helen M Berman,et al.  Development of a Prototype System for Archiving Integrative/Hybrid Structure Models of Biological Macromolecules. , 2018, Structure.

[9]  James E Bruce,et al.  Mass spectrometry identifiable cross-linking strategy for studying protein-protein interactions. , 2005, Analytical chemistry.

[10]  Michael J MacCoss,et al.  Kojak: efficient analysis of chemically cross-linked protein complexes. , 2015, Journal of proteome research.

[11]  Rosa Viner,et al.  Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification , 2017, Nature Communications.

[12]  Otto Hudecz,et al.  Structural prediction of protein models using distance restraints derived from cross-linking mass spectrometry data , 2018, Nature Protocols.

[13]  Peter R Baker,et al.  Finding Chimeras: a Bioinformatics Strategy for Identification of Cross-linked Peptides* , 2009, Molecular & Cellular Proteomics.

[14]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2015, Nucleic Acids Res..

[15]  Yasset Perez-Riverol,et al.  A multi-center study benchmarks software tools for label-free proteome quantification , 2016, Nature Biotechnology.

[16]  A. Sinz,et al.  Mapping protein interfaces with a fluorogenic cross-linker and mass spectrometry: application to nebulin-calmodulin complexes. , 2001, Biochemistry.

[17]  Ruedi Aebersold,et al.  Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline , 2013, Nature Protocols.

[18]  Pei Wang,et al.  Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins , 2013, Nature Methods.

[19]  Michael Götze,et al.  StavroX—A Software for Analyzing Crosslinked Products in Protein Interaction Studies , 2011, Journal of The American Society for Mass Spectrometry.

[20]  Albert J R Heck,et al.  Efficient and robust proteome-wide approaches for cross-linking mass spectrometry , 2018, Nature Protocols.

[21]  Juan Antonio Vizcaíno,et al.  The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition , 2016, Nucleic Acids Res..

[22]  J. Eng,et al.  Comet: An open‐source MS/MS sequence database search tool , 2013, Proteomics.

[23]  Diogo B Lima,et al.  Characterization of homodimer interfaces with cross-linking mass spectrometry and isotopically labeled proteins , 2018, Nature Protocols.

[24]  M. Dong,et al.  Identification of cross-linked peptides from complex samples , 2012, Nature Methods.

[25]  Steven J. Rysavy,et al.  Distance restraints from crosslinking mass spectrometry: Mining a molecular dynamics simulation database to evaluate lysine–lysine distances , 2014, Protein science : a publication of the Protein Society.

[26]  Malin M. Young,et al.  High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry , 2000, Proc. Natl. Acad. Sci. USA.

[27]  Brett Larsen,et al.  Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry , 2016, bioRxiv.

[28]  Diogo B Lima,et al.  SIM-XL: A powerful and user-friendly tool for peptide cross-linking analysis. , 2015, Journal of proteomics.

[29]  Carla Schmidt,et al.  A comparative cross-linking strategy to probe conformational changes in protein complexes , 2014, Nature Protocols.

[30]  Juri Rappsilber,et al.  Quantitative cross-linking/mass spectrometry to elucidate structural changes in proteins and their complexes , 2018, Nature Protocols.

[31]  Michael J MacCoss,et al.  Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma* , 2015, Molecular & Cellular Proteomics.

[32]  Claudio Iacobucci,et al.  A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein–protein interactions , 2018, Nature Protocols.

[33]  Nir Kalisman,et al.  Structural Analysis of Protein Complexes by Cross-Linking and Mass Spectrometry. , 2018, Methods in molecular biology.

[34]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[35]  Christoph H Borchers,et al.  Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma , 2009, Nature Biotechnology.

[36]  Michael Götze,et al.  Automated Assignment of MS/MS Cleavable Cross-Links in Protein 3D-Structure Analysis , 2014, Journal of The American Society for Mass Spectrometry.

[37]  Harald Barsnes,et al.  The mzIdentML Data Standard Version 1.2, Supporting Advances in Proteome Informatics* , 2017, Molecular & Cellular Proteomics.

[38]  M. Mann,et al.  A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. , 2000, Analytical chemistry.

[39]  Ruedi Aebersold,et al.  Identification of cross-linked peptides from large sequence databases , 2008, Nature Methods.

[40]  Lennart Martens,et al.  mzML—a Community Standard for Mass Spectrometry Data* , 2010, Molecular & Cellular Proteomics.

[41]  Carla Pasquarello,et al.  A multicentric study to evaluate the use of relative retention times in targeted proteomics. , 2017, Journal of proteomics.

[42]  Vladimir Sarpe,et al.  High Sensitivity Crosslink Detection Coupled With Integrative Structure Modeling in the Mass Spec Studio * , 2016, Molecular & Cellular Proteomics.