First Community-Wide, Comparative Cross-Linking Mass Spectrometry Study
暂无分享,去创建一个
Karl Mechtler | Michael J MacCoss | Jürgen Cox | Juri Rappsilber | Ruedi Aebersold | Albert J R Heck | Alex Zelter | Oleg Klykov | Alexander Leitner | Esben Trabjerg | Claudio Iacobucci | Michael Götze | Andrea Sinz | Marina Gay | Robert L Moritz | Michael R Hoopmann | Fabio C Gozzo | Juan D Chavez | James E Bruce | Christoph Borchers | Richard A Scheltema | Gianluca Degliesposti | Marta Vilaseca | Franz Herzog | Frank Sobott | Lan Huang | Nir Kalisman | Evgeniy Petrotchenko | Carla Schmidt | Florian Stengel | Christine Piotrowski | Francisco Gomes-Neto | Nagarjuna Nagaraj | Fan Liu | Meng-Qiu Dong | Stéphane Claverol | David C Schriemer | Kasper D Rand | Cecilia Emanuelsson | Philip Andrews | Nicolas I. Brodie | Stéphane Chaignepain | Nufar Edinger | Craig Gutierrez | Caroline Haupt | Zdeněk Kukačka | Ravit Mesika | Victor Nesati | Matthias Pelzing | Lolita Piersimoni | Tara Pukala | Dana Reichmann | Chris P. Sarnowski | Moriya Slavin | Victor Solis-Mezarino | Heike Stephanowitz | Michael Trnka | Rosa Viner | Yufei Xiang | Daniel Ziemianowicz | Petr Novák | Yong Cao | Yi Shi | R. Aebersold | J. Cox | M. MacCoss | R. Moritz | P. Andrews | T. Davis | M. Dong | A. Heck | K. Mechtler | F. Herzog | A. Leitner | F. Gozzo | G. Degliesposti | Nagarjuna Nagaraj | Nir Kalisman | C. Emanuelsson | R. Scheltema | Lan Huang | J. Rappsilber | C. Borchers | Michael Götze | M. Trnka | Florian Stengel | M. Hoopmann | J. Bruce | Carolin Sailer | C. Iacobucci | C. Piotrowski | A. Sinz | D. Reichmann | T. Pukala | M. Pelzing | F. Sobott | D. Schriemer | F. Liu | J. Skehel | A. Zelter | Nufar Edinger | S. Claverol | Victor Solis-Mezarino | K. Rand | Christian E Stieger | E. Petrotchenko | Carla Schmidt | M. Gay | M. Vilaseca | Francis J. O’Reilly | R. Viner | Şule Yılmaz | Z. Kukačka | P. Novák | J. Chavez | M. Plasencia | O. Klykov | Daniel S. Ziemianowicz | H. Stephanowitz | Manolo Plasencia | Bruno C. Amaral | K. Bernfur | Yong Cao | S. Chaignepain | F. Gomes-Neto | Craig B Gutierrez | Caroline Haupt | Ravit Mesika | Victor Nesati | A. Neves-Ferreira | R. Ninnis | Lolita Piersimoni | Yi Shi | Moriya Slavin | Esben Trabjerg | Yufei Xiang | J Mark Skehel | Carolin Sailer | Katja Bernfur | Michael J. Trnka | Bruno C Amaral | Nicolas I Brodie | Trisha Davis | Ana G C Neves-Ferreira | Robert Ninnis | Francis J O'Reilly | Chris P Sarnowski | Sule Yilmaz | Fan Liu | R. Mesika | Craig B. Gutierrez | Christian E. Stieger | Franz Herzog | Manolo Plasencia | Dana Reichmann
[1] Jan C. Refsgaard,et al. CrossWork: software-assisted identification of cross-linked peptides. , 2011, Journal of proteomics.
[2] Martin Eisenacher,et al. Proteomics Standards Initiative: Fifteen Years of Progress and Future Work , 2017, Journal of proteome research.
[3] Martin Kussmann,et al. Chemical cross‐linking with thiol‐cleavable reagents combined with differential mass spectrometric peptide mapping—A novel approach to assess intermolecular protein contacts , 2000, Protein science : a publication of the Protein Society.
[4] C. Borchers,et al. DXMSMS Match Program for Automated Analysis of LC‐MS/MS Data Obtained Using Isotopically Coded CID‐Cleavable Cross‐Linking Reagents , 2014, Current protocols in bioinformatics.
[5] Albert J R Heck,et al. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry , 2015, Nature Methods.
[6] Lennart Martens,et al. The minimum information about a proteomics experiment (MIAPE) , 2007, Nature Biotechnology.
[7] Robert E. Kearney,et al. A HUPO test sample study reveals common problems in mass spectrometry-based proteomics , 2009, Nature Methods.
[8] Helen M Berman,et al. Development of a Prototype System for Archiving Integrative/Hybrid Structure Models of Biological Macromolecules. , 2018, Structure.
[9] James E Bruce,et al. Mass spectrometry identifiable cross-linking strategy for studying protein-protein interactions. , 2005, Analytical chemistry.
[10] Michael J MacCoss,et al. Kojak: efficient analysis of chemically cross-linked protein complexes. , 2015, Journal of proteome research.
[11] Rosa Viner,et al. Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification , 2017, Nature Communications.
[12] Otto Hudecz,et al. Structural prediction of protein models using distance restraints derived from cross-linking mass spectrometry data , 2018, Nature Protocols.
[13] Peter R Baker,et al. Finding Chimeras: a Bioinformatics Strategy for Identification of Cross-linked Peptides* , 2009, Molecular & Cellular Proteomics.
[14] José A. Dianes,et al. 2016 update of the PRIDE database and its related tools , 2015, Nucleic Acids Res..
[15] Yasset Perez-Riverol,et al. A multi-center study benchmarks software tools for label-free proteome quantification , 2016, Nature Biotechnology.
[16] A. Sinz,et al. Mapping protein interfaces with a fluorogenic cross-linker and mass spectrometry: application to nebulin-calmodulin complexes. , 2001, Biochemistry.
[17] Ruedi Aebersold,et al. Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline , 2013, Nature Protocols.
[18] Pei Wang,et al. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins , 2013, Nature Methods.
[19] Michael Götze,et al. StavroX—A Software for Analyzing Crosslinked Products in Protein Interaction Studies , 2011, Journal of The American Society for Mass Spectrometry.
[20] Albert J R Heck,et al. Efficient and robust proteome-wide approaches for cross-linking mass spectrometry , 2018, Nature Protocols.
[21] Juan Antonio Vizcaíno,et al. The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition , 2016, Nucleic Acids Res..
[22] J. Eng,et al. Comet: An open‐source MS/MS sequence database search tool , 2013, Proteomics.
[23] Diogo B Lima,et al. Characterization of homodimer interfaces with cross-linking mass spectrometry and isotopically labeled proteins , 2018, Nature Protocols.
[24] M. Dong,et al. Identification of cross-linked peptides from complex samples , 2012, Nature Methods.
[25] Steven J. Rysavy,et al. Distance restraints from crosslinking mass spectrometry: Mining a molecular dynamics simulation database to evaluate lysine–lysine distances , 2014, Protein science : a publication of the Protein Society.
[26] Malin M. Young,et al. High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry , 2000, Proc. Natl. Acad. Sci. USA.
[27] Brett Larsen,et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry , 2016, bioRxiv.
[28] Diogo B Lima,et al. SIM-XL: A powerful and user-friendly tool for peptide cross-linking analysis. , 2015, Journal of proteomics.
[29] Carla Schmidt,et al. A comparative cross-linking strategy to probe conformational changes in protein complexes , 2014, Nature Protocols.
[30] Juri Rappsilber,et al. Quantitative cross-linking/mass spectrometry to elucidate structural changes in proteins and their complexes , 2018, Nature Protocols.
[31] Michael J MacCoss,et al. Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma* , 2015, Molecular & Cellular Proteomics.
[32] Claudio Iacobucci,et al. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein–protein interactions , 2018, Nature Protocols.
[33] Nir Kalisman,et al. Structural Analysis of Protein Complexes by Cross-Linking and Mass Spectrometry. , 2018, Methods in molecular biology.
[34] M. Mann,et al. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.
[35] Christoph H Borchers,et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma , 2009, Nature Biotechnology.
[36] Michael Götze,et al. Automated Assignment of MS/MS Cleavable Cross-Links in Protein 3D-Structure Analysis , 2014, Journal of The American Society for Mass Spectrometry.
[37] Harald Barsnes,et al. The mzIdentML Data Standard Version 1.2, Supporting Advances in Proteome Informatics* , 2017, Molecular & Cellular Proteomics.
[38] M. Mann,et al. A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. , 2000, Analytical chemistry.
[39] Ruedi Aebersold,et al. Identification of cross-linked peptides from large sequence databases , 2008, Nature Methods.
[40] Lennart Martens,et al. mzML—a Community Standard for Mass Spectrometry Data* , 2010, Molecular & Cellular Proteomics.
[41] Carla Pasquarello,et al. A multicentric study to evaluate the use of relative retention times in targeted proteomics. , 2017, Journal of proteomics.
[42] Vladimir Sarpe,et al. High Sensitivity Crosslink Detection Coupled With Integrative Structure Modeling in the Mass Spec Studio * , 2016, Molecular & Cellular Proteomics.