Constructing bimetallic heterostructure as anodes for sodium storage with superior stability and high capacity

[1]  Zaiping Guo,et al.  Electrolyte Engineering on Performance Enhancement of NiCo2 S4 Anode for Sodium Storage. , 2023, Small.

[2]  Jiaguo Yu,et al.  In-situ synthesis of FeS/N, S co-doped carbon composite with electrolyte-electrode synergy for rapid sodium storage. , 2023, Journal of colloid and interface science.

[3]  Jun Wu,et al.  Rich Self-Generated Phase Boundaries of Heterostructured VS4 /Bi2 S3 @C Nanorods for Long Lifespan Sodium-Ion Batteries. , 2022, Small.

[4]  Qingsong Wang,et al.  P2-type layered high-entropy oxides as sodium-ion cathode materials , 2022, Materials Futures.

[5]  Ji‐Guang Zhang,et al.  Low-solvation electrolytes for high-voltage sodium-ion batteries , 2022, Nature Energy.

[6]  Xiaobo Ji,et al.  Suppressing the voltage failure by twinned heterostructure for high power sodium-ion capacitor , 2022, Chemical Engineering Journal.

[7]  G. Yin,et al.  Investigating the Origin of the Enhanced Sodium Storage Capacity of Transition Metal Sulfide Anodes in Ether‐Based Electrolytes , 2022, Advanced Functional Materials.

[8]  M. Butt,et al.  SnSe2 monolayer is a promising Na host material: A DFT study , 2021, Materials Science in Semiconductor Processing.

[9]  Xiaofeng Fan,et al.  First principles predictions of Na and K storage in layered SnSe2 , 2021 .

[10]  Rujia Zou,et al.  Enhancing the Electrochemical Performance of Sodium-Ion Batteries by Building Optimized NiS2 /NiSe2 Heterostructures. , 2021, Small.

[11]  Q. Yan,et al.  MXenes as a versatile platform for reactive surface modification and superior sodium‐ion storages , 2021, Exploration.

[12]  Guoxiu Wang,et al.  Nanoconfined SnO2/SnSe2 heterostructures in N-doped carbon nanotubes for high-performance sodium-ion batteries , 2021 .

[13]  Wei Huang,et al.  Conversion of hydroxide into carbon-coated phosphide using plasma for sodium ion batteries , 2021, Nano Research.

[14]  T. Ma,et al.  Bimetallic Sulfide SnS2/FeS2 Nanosheets as High-Performance Anode Materials for Sodium-Ion Batteries. , 2021, ACS applied materials & interfaces.

[15]  Jingxia Qiu,et al.  Rational Design of the CoS/Co9S8@NC Composite Enabling High-Rate Sodium-Ion Storage , 2021 .

[16]  X. Xia,et al.  Emerging of Heterostructure Materials in Energy Storage: A Review , 2021, Advanced materials.

[17]  P. Král,et al.  Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes , 2021, Nature Materials.

[18]  Jianhua Liu,et al.  Study on Structure Evolution and Reaction Mechanism in Microwave Pre-oxidation , 2021, Journal of Inorganic and Organometallic Polymers and Materials.

[19]  J. Chen,et al.  SeC Bonding Promoting Fast and Durable Na+ Storage in Yolk-Shell SnSe2 @SeC. , 2020, Small.

[20]  Yihe Zhang,et al.  CTAB-modified Ni2P@ACNT composite with enhanced supercapacitive and lithium/sodium storage performance , 2020 .

[21]  A. Cheetham,et al.  Phase boundary engineering of metal-organic-framework-derived carbonaceous nickel selenides for sodium-ion batteries , 2020, Nano Research.

[22]  Jin‐shui Liu,et al.  Improved Electrochemical Performance of Sodium/Potassium‐Ion Batteries in Ether‐Based Electrolyte: Cases Study of MoS2@C and Fe7S8@C Anodes , 2020, Advanced Materials Interfaces.

[23]  Lifang Jiao,et al.  Heterostructure SnSe2/ZnSe@PDA Nanobox for Stable and Highly Efficient Sodium‐Ion Storage , 2020, Advanced Energy Materials.

[24]  Xinyu Zhang,et al.  Carbon nanotubes decorated NiSe2 nanosheets for high-performance supercapacitors , 2020 .

[25]  Xing Ou,et al.  Bimetallic Sulfide Sb2S3@FeS2 Hollow Nanorods as High-Performance Anode Materials for Sodium-Ion Batteries. , 2020, ACS nano.

[26]  Xu Yang,et al.  Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries , 2019, Energy & Environmental Science.

[27]  Haiyan Wang,et al.  Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries , 2019 .

[28]  Weihua Chen,et al.  Simple synthesis of sandwich-like SnSe2/rGO as high initial coulombic efficiency and high stability anode for sodium-ion batteries , 2019, Journal of Energy Chemistry.

[29]  Guangda Li,et al.  NiSe2 nanooctahedra as anodes for high-performance sodium-ion batteries , 2019, New Journal of Chemistry.

[30]  Qichen Wang,et al.  Metal Organic Framework-Templated Synthesis of Bimetallic Selenides with Rich Phase Boundaries for Sodium-Ion Storage and Oxygen Evolution Reaction. , 2019, ACS nano.

[31]  Xiaobo Ji,et al.  Hierarchical Hollow‐Microsphere Metal–Selenide@Carbon Composites with Rational Surface Engineering for Advanced Sodium Storage , 2018, Advanced Energy Materials.

[32]  Kangli Wang,et al.  TiS2 as an Advanced Conversion Electrode for Sodium‐Ion Batteries with Ultra‐High Capacity and Long‐Cycle Life , 2018, Advanced science.

[33]  Huaihe Song,et al.  Two-Dimensional NiSe2/N-Rich Carbon Nanocomposites Derived from Ni-Hexamine Frameworks for Superb Na-Ion Storage. , 2018, ACS applied materials & interfaces.

[34]  Feng Wu,et al.  Conductivity and Pseudocapacitance Optimization of Bimetallic Antimony–Indium Sulfide Anodes for Sodium‐Ion Batteries with Favorable Kinetics , 2018, Advanced science.

[35]  Xiaobo Ji,et al.  Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property , 2018, Nano Energy.

[36]  S. Passerini,et al.  Sodium-Ion Batteries: Beyond Insertion for Na-Ion Batteries: Nanostructured Alloying and Conversion Anode Materials (Adv. Energy Mater. 17/2018) , 2018, Advanced Energy Materials.

[37]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[38]  Chenghao Yang,et al.  In situ X-ray diffraction characterization of NiSe2 as a promising anode material for sodium ion batteries , 2017 .

[39]  H. Alshareef,et al.  SnSe2 2D Anodes for Advanced Sodium Ion Batteries , 2016 .

[40]  Seung Yeon Lee,et al.  First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber , 2016, Scientific Reports.

[41]  J. Lou,et al.  Metal diselenide nanoparticles as highly active and stable electrocatalysts for the hydrogen evolution reaction. , 2015, Nanoscale.

[42]  F. Motasemi,et al.  A review on the microwave-assisted pyrolysis technique , 2013 .

[43]  G. Muralidharan,et al.  Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. , 2013, ACS applied materials & interfaces.

[44]  Z. Fu,et al.  Lithium electrochemistry of NiSe2: A new kind of storage energy material , 2006 .

[45]  J. Honig,et al.  Electronic Properties of NiS2-xSex Single Crystals: From Magnetic Mott−Hubbard Insulators to Normal Metals , 1998 .

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  S. Ogawa Magnetic properties of 3d transition‐metal dichalcogenides with the pyrite structure , 1979 .

[48]  Wei Yan,et al.  Constructing Novel Heterostructure of NiSe2/CoSe2 Nanoparticles with Boosted Sodium Storage Properties for Sodium-Ion Batteries , 2022, Journal of Materials Chemistry A.