Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge

[1]  K. Embleton,et al.  A comparison of dual gradient‐echo and spin‐echo fMRI of the inferior temporal lobe , 2014, Human brain mapping.

[2]  S. Cappa,et al.  The neural representation of abstract words: the role of emotion. , 2014, Cerebral cortex.

[3]  S. Crutch,et al.  Clustering, hierarchical organization, and the topography of abstract and concrete nouns , 2014, Front. Psychol..

[4]  Holly Robson,et al.  The anterior temporal lobes support residual comprehension in Wernicke’s aphasia , 2014, Brain : a journal of neurology.

[5]  John Powers,et al.  Comparative semantic profiles in semantic dementia and Alzheimer's disease. , 2013, Brain : a journal of neurology.

[6]  Richard P. Cooper,et al.  Is there a semantic system for abstract words? , 2013, Front. Hum. Neurosci..

[7]  Roy W Jones,et al.  Be concrete to be comprehended: Consistent imageability effects in semantic dementia for nouns, verbs, synonyms and associates , 2013, Cortex.

[8]  E. Jefferies The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS , 2013, Cortex.

[9]  T. Rogers,et al.  Semantic diversity: A measure of semantic ambiguity based on variability in the contextual usage of words , 2012, Behavior Research Methods.

[10]  A. Caramazza,et al.  Conceptual Object Representations in Human Anterior Temporal Cortex , 2012, The Journal of Neuroscience.

[11]  Matthew A. Lambon Ralph,et al.  Convergent Connectivity and Graded Specialization in the Rostral Human Temporal Lobe as Revealed by Diffusion-Weighted Imaging Probabilistic Tractography , 2012, Journal of Cognitive Neuroscience.

[12]  Elizabeth Jefferies,et al.  Both the Middle Temporal Gyrus and the Ventral Anterior Temporal Area Are Crucial for Multimodal Semantic Processing: Distortion-corrected fMRI Evidence for a Double Gradient of Information Convergence in the Temporal Lobes , 2012, Journal of Cognitive Neuroscience.

[13]  B. Bahrami,et al.  Coming of age: A review of embodiment and the neuroscience of semantics , 2012, Cortex.

[14]  Morris Moscovitch,et al.  Cognitive contributions of the ventral parietal cortex: an integrative theoretical account , 2012, Trends in Cognitive Sciences.

[15]  Hsuan-Chih Chen,et al.  The anterior left inferior frontal gyrus contributes to semantic unification , 2012, NeuroImage.

[16]  F. Dubeau,et al.  Comprehension of concrete and abstract words in patients with selective anterior temporal lobe resection and in patients with selective amygdalo-hippocampectomy , 2012, Neuropsychologia.

[17]  Matthew A. Lambon Ralph,et al.  Differential Contributions of Bilateral Ventral Anterior Temporal Lobe and Left Anterior Superior Temporal Gyrus to Semantic Processes , 2011, Journal of Cognitive Neuroscience.

[18]  Matthew A. Lambon Ralph,et al.  Semantic Diversity Accounts for the “Missing” Word Frequency Effect in Stroke Aphasia: Insights Using a Novel Method to Quantify Contextual Variability in Meaning , 2011, Journal of Cognitive Neuroscience.

[19]  B. Miller,et al.  Classification of primary progressive aphasia and its variants , 2011, Neurology.

[20]  P. Hoffman,et al.  Reverse concreteness effects are not a typical feature of semantic dementia: evidence for the hub-and-spoke model of conceptual representation. , 2011, Cerebral cortex.

[21]  G. Vigliocco,et al.  The representation of abstract words: why emotion matters. , 2011, Journal of experimental psychology. General.

[22]  P. Hoffman,et al.  Ventrolateral Prefrontal Cortex Plays an Executive Regulation Role in Comprehension of Abstract Words: Convergent Neuropsychological and Repetitive TMS Evidence , 2010, The Journal of Neuroscience.

[23]  Richard J. Binney,et al.  The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. , 2010, Cerebral cortex.

[24]  Guy B. Williams,et al.  What the left and right anterior fusiform gyri tell us about semantic memory. , 2010, Brain : a journal of neurology.

[25]  Geoff J M Parker,et al.  Distortion correction for diffusion‐weighted MRI tractography and fMRI in the temporal lobes , 2010, Human brain mapping.

[26]  S. Shinkareva,et al.  Neural representation of abstract and concrete concepts: A meta‐analysis of neuroimaging studies , 2010, Human brain mapping.

[27]  M. L. Lambon Ralph,et al.  The Neural Organization of Semantic Control: TMS Evidence for a Distributed Network in Left Inferior Frontal and Posterior Middle Temporal Gyrus , 2010, Cerebral cortex.

[28]  Elizabeth Jefferies,et al.  Heterogeneity of the Left Temporal Lobe in Semantic Representation and Control: Priming Multiple versus Single Meanings of Ambiguous Words , 2010, Cerebral cortex.

[29]  Elizabeth Jefferies,et al.  Elucidating the Nature of Deregulated Semantic Cognition in Semantic Aphasia: Evidence for the Roles of Prefrontal and Temporo-parietal Cortices , 2010, Journal of Cognitive Neuroscience.

[30]  T. Shallice,et al.  Conceptual proposition selection and the LIFG: Neuropsychological evidence from a focal frontal group , 2010, Neuropsychologia.

[31]  E. Jefferies,et al.  Amodal semantic representations depend on both anterior temporal lobes: Evidence from repetitive transcranial magnetic stimulation , 2010, Neuropsychologia.

[32]  Elizabeth Jefferies,et al.  Semantic Processing in the Anterior Temporal Lobes: A Meta-analysis of the Functional Neuroimaging Literature , 2010, Journal of Cognitive Neuroscience.

[33]  Emily J. Mayberry,et al.  Coherent concepts are computed in the anterior temporal lobes , 2010, Proceedings of the National Academy of Sciences.

[34]  William W. Graves,et al.  Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. , 2009, Cerebral cortex.

[35]  M. L. Lambon Ralph,et al.  The role of the anterior temporal lobes in the comprehension of concrete and abstract words: rTMS evidence , 2009, Cortex.

[36]  Roy W Jones,et al.  Comprehension of concrete and abstract words in semantic dementia. , 2009, Neuropsychology.

[37]  B. Miller,et al.  The Neural Correlates of Verbal and Nonverbal Semantic Processing Deficits in Neurodegenerative Disease , 2009, Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology.

[38]  J. Macoir Is a plum a memory problem? Longitudinal study of the reversal of concreteness effect in a patient with semantic dementia , 2009, Neuropsychologia.

[39]  Andrea Moro,et al.  Negation in the brain: Modulating action representations , 2008, NeuroImage.

[40]  S. Thompson-Schill,et al.  Semantic adaptation and competition during word comprehension. , 2008, Cerebral cortex.

[41]  David Badre,et al.  Left ventrolateral prefrontal cortex and the cognitive control of memory , 2007, Neuropsychologia.

[42]  E. Jefferies,et al.  Anterior temporal lobes mediate semantic representation: Mimicking semantic dementia by using rTMS in normal participants , 2007, Proceedings of the National Academy of Sciences.

[43]  T. Rogers,et al.  Where do you know what you know? The representation of semantic knowledge in the human brain , 2007, Nature Reviews Neuroscience.

[44]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[45]  Justin C. Hulbert,et al.  Understanding words in context: The role of Broca's area in word comprehension , 2007, Brain Research.

[46]  D. Poeppel,et al.  The cortical organization of speech processing , 2007, Nature Reviews Neuroscience.

[47]  Remco J. Renken,et al.  Semantic ambiguity processing in sentence context: Evidence from event-related fMRI , 2007, NeuroImage.

[48]  Kevin Murphy,et al.  How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration , 2007, NeuroImage.

[49]  T. Rogers,et al.  Neural basis of category-specific semantic deficits for living things: evidence from semantic dementia, HSVE and a neural network model. , 2006, Brain : a journal of neurology.

[50]  H. Stadthagen-González,et al.  The Bristol norms for age of acquisition, imageability, and familiarity , 2006, Behavior research methods.

[51]  Sharon L. Thompson-Schill,et al.  Neuroanatomically separable effects of imageability and grammatical class during single-word comprehension , 2006, Brain and Language.

[52]  M. L. Lambon Ralph,et al.  Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. , 2006, Brain : a journal of neurology.

[53]  S. Scott,et al.  Converging Language Streams in the Human Temporal Lobe , 2006, The Journal of Neuroscience.

[54]  Tim D. Fryer,et al.  Declarative memory impairments in Alzheimer's disease and semantic dementia , 2006, NeuroImage.

[55]  Colin Humphries,et al.  Syntactic and Semantic Modulation of Neural Activity during Auditory Sentence Comprehension , 2006, Journal of Cognitive Neuroscience.

[56]  David Badre,et al.  Frontal lobe mechanisms that resolve proactive interference. , 2005, Cerebral cortex.

[57]  R. Poldrack,et al.  Dissociable Controlled Retrieval and Generalized Selection Mechanisms in Ventrolateral Prefrontal Cortex , 2005, Neuron.

[58]  Matthew H. Davis,et al.  The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity. , 2005, Cerebral cortex.

[59]  Jeffrey R. Binder,et al.  Modulation of the semantic system by word imageability , 2005, NeuroImage.

[60]  David A. Medler,et al.  Distinct Brain Systems for Processing Concrete and Abstract Concepts , 2005, Journal of Cognitive Neuroscience.

[61]  S. Scott,et al.  Retrieving meaning after temporal lobe infarction: The role of the basal language area , 2004, Annals of neurology.

[62]  Uta Noppeney,et al.  Retrieval of abstract semantics , 2004, NeuroImage.

[63]  S. Thompson-Schill Neuroimaging studies of semantic memory: inferring “how” from “where” , 2003, Neuropsychologia.

[64]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[65]  J. Hart,et al.  Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. , 2003, Brain research. Cognitive brain research.

[66]  Valerie A. Carr,et al.  Spatiotemporal Dynamics of Modality-Specific and Supramodal Word Processing , 2003, Neuron.

[67]  D. Plaut Graded modality-specific specialisation in semantics: A computational account of optic aphasia , 2002, Cognitive neuropsychology.

[68]  David Badre,et al.  Semantic retrieval, mnemonic control, and prefrontal cortex. , 2002, Behavioral and cognitive neuroscience reviews.

[69]  Robert T. Knight,et al.  Effects of frontal lobe damage on interference effects in working memory , 2002, Cognitive, affective & behavioral neuroscience.

[70]  A. Nobre,et al.  The Response of Left Temporal Cortex to Sentences , 2002, Journal of Cognitive Neuroscience.

[71]  Michael Wilson MRC Psycholinguistic Database , 2001 .

[72]  C. Metzler,et al.  Effects of left frontal lesions on the selection of context-appropriate meanings. , 2001, Neuropsychology.

[73]  D. Howard,et al.  Age of acquisition and imageability ratings for a large set of words, including verbs and function words , 2001, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[74]  S. Scott,et al.  Identification of a pathway for intelligible speech in the left temporal lobe. , 2000, Brain : a journal of neurology.

[75]  D. Schacter,et al.  Task-specific repetition priming in left inferior prefrontal cortex. , 2000, Cerebral cortex.

[76]  T. Shallice,et al.  “Sculpting the Response Space”—An Account of Left Prefrontal Activation at Encoding , 2000, NeuroImage.

[77]  J. Hodges,et al.  Non-verbal semantic impairment in semantic dementia , 2000, Neuropsychologia.

[78]  Matthew H. Davis,et al.  Susceptibility-Induced Loss of Signal: Comparing PET and fMRI on a Semantic Task , 2000, NeuroImage.

[79]  C. Price,et al.  Three Distinct Ventral Occipitotemporal Regions for Reading and Object Naming , 1999, NeuroImage.

[80]  Irene P. Kan,et al.  Effects of Repetition and Competition on Activity in Left Prefrontal Cortex during Word Generation , 1999, Neuron.

[81]  Irene P. Kan,et al.  Verb generation in patients with focal frontal lesions: a neuropsychological test of neuroimaging findings. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M. Farah,et al.  Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[83]  M. Farah,et al.  A functional MRI study of mental image generation , 1997, Neuropsychologia.

[84]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[85]  Richard S. J. Frackowiak,et al.  Functional anatomy of a common semantic system for words and pictures , 1996, Nature.

[86]  T. Shallice,et al.  Deep Dyslexia: A Case Study of , 1993 .

[87]  A. Sirigu,et al.  The role of sensorimotor experience in object recognition. A case of multimodal agnosia. , 1991, Brain : a journal of neurology.

[88]  R. W. Stowe,et al.  Context availability and lexical decisions for abstract and concrete words , 1988 .

[89]  A. Paivio Mental Representations: A Dual Coding Approach , 1986 .

[90]  Gregory V. Jones Deep dyslexia, imageability, and ease of predication , 1985, Brain and Language.

[91]  Elizabeth Jefferies,et al.  Executive Semantic Processing Is Underpinned by a Large-scale Neural Network: Revealing the Contribution of Left Prefrontal, Posterior Temporal, and Parietal Cortex to Controlled Retrieval and Selection Using TMS , 2012, Journal of Cognitive Neuroscience.

[92]  Mbleton,et al.  The inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: Evidence from a novel direct comparison of distortion-corrected fMRI, rTMS and semantic dementia , 2010 .

[93]  Jean-Luc Anton,et al.  Region of interest analysis using an SPM toolbox , 2010 .

[94]  Peter,et al.  Semantic Unification , 2008 .

[95]  M. Grossman,et al.  Reversal of the concreteness effect for verbs in patients with semantic dementia. , 2007, Neuropsychology.

[96]  K. Wiemer-hastings,et al.  Content Differences for Abstract and Concrete Concepts , 2005 .

[97]  Peter Hagoort,et al.  Broca's Complex as the Unification Space for Language , 2005 .

[98]  James L. McClelland,et al.  Structure and deterioration of semantic memory: a neuropsychological and computational investigation. , 2004, Psychological review.

[99]  J. A. Frost,et al.  Conceptual Processing during the Conscious Resting State: A Functional MRI Study , 1999, Journal of Cognitive Neuroscience.

[100]  R. H. Baayen,et al.  The CELEX Lexical Database (CD-ROM) , 1996 .

[101]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[102]  S. Petersen,et al.  Practice-related changes in human brain functional anatomy during nonmotor learning. , 1994, Cerebral cortex.

[103]  E. Shoben,et al.  Differential Context Effects in the Comprehension of Abstract and Concrete Verbal Materials , 1983 .

[104]  E. Warrington Quarterly Journal of Experimental Psychology the Selective Impairment of Semantic Memory the Selective Impairment of Semantic Memory , 2022 .

[105]  Michael F. Bonner,et al.  Reversal of the concreteness effect in semantic dementia , 2009, Cognitive neuropsychology.