Quantum Navigation and Ranking in Complex Networks

Complex networks are formal frameworks capturing the interdependencies between the elements of large systems and databases. This formalism allows to use network navigation methods to rank the importance that each constituent has on the global organization of the system. A key example is Pagerank navigation which is at the core of the most used search engine of the World Wide Web. Inspired in this classical algorithm, we define a quantum navigation method providing a unique ranking of the elements of a network. We analyze the convergence of quantum navigation to the stationary rank of networks and show that quantumness decreases the number of navigation steps before convergence. In addition, we show that quantum navigation allows to solve degeneracies found in classical ranks. By implementing the quantum algorithm in real networks, we confirm these improvements and show that quantum coherence unveils new hierarchical features about the global organization of complex systems.

[1]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[2]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[3]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[4]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[5]  Alessandro Vespignani Modelling dynamical processes in complex socio-technical systems , 2011, Nature Physics.

[6]  Daniel A. Lidar,et al.  Adiabatic quantum algorithm for search engine ranking. , 2011, Physical review letters.

[7]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[8]  Susana Huelga,et al.  Stochastic Resonance Phenomena in Quantum Many-Body Systems , 2007 .

[9]  Gourab Ghoshal,et al.  Ranking stability and super-stable nodes in complex networks. , 2011, Nature communications.

[10]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[11]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[12]  N. G. Van Kampen,et al.  Chapter III – STOCHASTIC PROCESSES , 2007 .

[13]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[14]  Susana F. Huelga,et al.  Open Quantum Systems: An Introduction , 2011, 1104.5242.

[15]  V. Kendon,et al.  A random walk approach to quantum algorithms , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Bernhard H. Haak,et al.  Open Quantum Systems , 2019, Tutorials, Schools, and Workshops in the Mathematical Sciences.

[18]  Martí Cuquet,et al.  Entanglement percolation in quantum complex networks. , 2009, Physical review letters.

[19]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[20]  Dimitri Volchenkov,et al.  Random Walks and Diffusions on Graphs and Databases , 2011 .

[21]  Stefano Allesina,et al.  Googling Food Webs: Can an Eigenvector Measure Species' Importance for Coextinctions? , 2009, PLoS Comput. Biol..

[22]  Ángel Sánchez,et al.  Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics , 2009, Physics of life reviews.

[23]  P. Blanchard,et al.  Random Walks and Diffusions on Graphs and Databases: An Introduction , 2011 .

[24]  G. Szabó,et al.  Evolutionary games on graphs , 2006, cond-mat/0607344.

[25]  Hänggi,et al.  Coherent and incoherent quantum stochastic resonance. , 1996, Physical review letters.

[26]  Herbert Spohn,et al.  An algebraic condition for the approach to equilibrium of an open N-level system , 1977 .

[27]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[28]  Santo Fortunato,et al.  Diffusion of scientific credits and the ranking of scientists , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Massimo Marchiori,et al.  The Quest for Correct Information on the Web: Hyper Search Engines , 1997, Comput. Networks.

[30]  Pawan Kumar,et al.  Notice of Violation of IEEE Publication Principles The Anatomy of a Large-Scale Hyper Textual Web Search Engine , 2009 .

[31]  Miguel-Angel Martin-Delgado,et al.  Google in a Quantum Network , 2011, Scientific Reports.

[32]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[33]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[34]  S. Perseguers,et al.  Quantum random networks , 2009, 0907.3283.

[35]  Xiao-Pu Han,et al.  Quantum Small-world Networks , 2011 .

[36]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[37]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[38]  M. Kendall,et al.  The Problem of $m$ Rankings , 1939 .

[39]  Alexander Blumen,et al.  Continuous-Time Quantum Walks: Models for Coherent Transport on Complex Networks , 2011, 1101.2572.

[40]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[41]  James D. Whitfield,et al.  Quantum Stochastic Walks: A Generalization of Classical Random Walks and Quantum Walks , 2009, 0905.2942.

[42]  J. Delvenne,et al.  Centrality measures and thermodynamic formalism for complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[44]  Alessandro Vespignani,et al.  Reaction–diffusion processes and metapopulation models in heterogeneous networks , 2007, cond-mat/0703129.

[45]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[46]  Graham R. Fleming,et al.  Focus on quantum effects and noise in biomolecules , 2011 .

[47]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[48]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[49]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[50]  H. Spencer The structure of the nervous system. , 1870 .

[51]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.