The effect of Ga pre-deposition on Si (111) surface for InAs nanowire selective area hetero-epitaxy
暂无分享,去创建一个
Rita Rooyackers | Aaron Thean | Wilfried Vandervorst | Marc Heyns | Nadine Collaert | Hugo Bender | Clement Merckling | Olivier Richard | Juan Rubio-Zuazo | Germán R. Castro | Alexis Franquet | O. Richard | H. Bender | A. Thean | N. Collaert | Ziyang Liu | C. Merckling | A. Franquet | R. Rooyackers | M. Heyns | W. Vandervorst | Ziyang Liu | María Vila | J. Rubio‐Zuazo | G. Castro | M. Vila
[1] Dimitri A. Antoniadis,et al. Nanometer-Scale III-V MOSFETs , 2016, IEEE Journal of the Electron Devices Society.
[2] Olmstead,et al. Interface formation of GaAs with Si(100), Si(111), and Ge(111): Core-level spectroscopy for monolayer coverages of GaAs, Ga, and As. , 1987, Physical review. B, Condensed matter.
[3] Jacobson,et al. Location of atoms in the first monolayer of GaAs on Si. , 1987, Physical review letters.
[4] J-P Zhang,et al. Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy , 2010, Nanotechnology.
[5] L. Wernersson,et al. Self-seeded, position-controlled InAs nanowire growth on Si: A growth parameter study , 2011, Journal of crystal growth.
[6] Yoshiaki Nakano,et al. Effect of Ga content on crystal shape in micro-channel selective-area MOVPE of InGaAs on Si , 2008 .
[7] Ferdinand Scholz,et al. Origin of faceted surface hillocks on semi-polar (112¯2) GaN templates grown on pre-structured sapphire , 2015 .
[8] M. Bichler,et al. Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy , 2010 .
[9] R. S. Wagner,et al. VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .
[10] S. Gradečak,et al. Effects of gold diffusion on n-type doping of GaAs nanowires. , 2010, Nano letters.
[11] M. Bichler,et al. Absence of vapor-liquid-solid growth during molecular beam epitaxy of self-induced InAs nanowires on Si , 2011 .
[12] Xin Zhao,et al. Nanometer-Scale Vertical-Sidewall Reactive Ion Etching of InGaAs for 3-D III-V MOSFETs , 2014, IEEE Electron Device Letters.
[13] Zhong Lin Wang,et al. Catalyst-Free Heteroepitaxial MOCVD Growth of InAs Nanowires on Si Substrates , 2014 .
[14] L.-E. Wernersson,et al. Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor With 50-nm Wrap Gate , 2008, IEEE Electron Device Letters.
[15] Takashi Fukui,et al. Control of InAs nanowire growth directions on Si. , 2008, Nano letters.
[16] Peng Wang,et al. High-resolution detection of Au catalyst atoms in Si nanowires. , 2008, Nature nanotechnology.
[17] Lars Samuelson,et al. Epitaxial III-V nanowires on silicon , 2004 .
[18] R. LaPierre,et al. Conditions for high yield of selective-area epitaxy InAs nanowires on SiOx/Si(111) substrates , 2015, Nanotechnology.
[19] K. Mitsuishi,et al. Polarity controlled InAs{111} films grown on Si(111) , 2011 .
[20] Lars Samuelson,et al. Au-free epitaxial growth of InAs nanowires. , 2006, Nano letters.
[21] L. Romano,et al. Influence of growth conditions, inversion domains, and atomic hydrogen on growth of (0001_) GaN by molecular beam epitaxy , 1998 .
[22] D. Zehner,et al. Preparation of atomically clean silicon surfaces by pulsed laser irradiation , 1980 .
[23] Takashi Fukui,et al. Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si(111) substrate , 2009, Nanotechnology.
[24] P. Warburton,et al. InAs1−xPx nanowires grown by catalyst-free molecular-beam epitaxy , 2013, Nanotechnology.
[25] Peide D. Ye,et al. Size-Dependent-Transport Study of $\hbox{In}_{0.53} \hbox{Ga}_{0.47}\hbox{As}$ Gate-All-Around Nanowire MOSFETs: Impact of Quantum Confinement and Volume Inversion , 2012, IEEE Electron Device Letters.
[26] Hugo Bender,et al. Controlled III/V Nanowire Growth by Selective-Area Vapor-Phase Epitaxy , 2009 .
[27] K. Tomioka,et al. Growth of InGaAs nanowires on Ge(111) by selective-area metal-organic vapor-phase epitaxy , 2017 .
[28] T. Yamazaki,et al. Investigation of Thermal Removal of Native Oxide from Si (100) Surfaces in Hydrogen for Low‐Temperature Si CVD Epitaxy , 1992 .
[29] J. D. del Alamo,et al. Alcohol-Based Digital Etch for III–V Vertical Nanowires With Sub-10 nm Diameter , 2017, IEEE Electron Device Letters.
[30] O. Richard,et al. Quantitative Method to Determine Planar Defect Frequency in InAs Nanowires by High Resolution X-ray Diffraction , 2015 .
[31] M. H. van der Veen,et al. Large‐area, catalyst‐free heteroepitaxy of InAs nanowires on Si by MOVPE , 2011 .
[32] P. Krogstrup,et al. Influence of the oxide layer for growth of self-assisted InAs nanowires on Si(111) , 2011, Nanoscale research letters.
[33] Heike Riel,et al. Si-InAs heterojunction Esaki tunnel diodes with high current densities , 2010 .
[34] Angel Lopez,et al. The multipurpose X-ray diffraction end-station of the BM25B-SpLine synchrotron beamline at the ESRF , 2013 .
[35] T. Fukui,et al. A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.
[36] M. Bichler,et al. Rate-limiting mechanisms in high-temperature growth of catalyst-free InAs nanowires with large thermal stability , 2012, Nanotechnology.
[37] M. Arlery,et al. Transmission electron microscopy characterization of GaN layers grown by MOCVD on sapphire , 1997 .
[38] H. Riel,et al. InAs nanowire growth on oxide-masked 〈111〉 silicon , 2012 .