The effect of Ga pre-deposition on Si (111) surface for InAs nanowire selective area hetero-epitaxy

Vertical InAs nanowires (NWs) grown on a Si substrate are promising building-blocks for next generation vertical gate-all-around transistor fabrication. We investigate the initial stage of InAs NW selective area epitaxy (SAE) on a patterned Si (111) substrate with a focus on the interfacial structures. The direct epitaxy of InAs NWs on a clean Si (111) surface is found to be challenging. The yield of vertical InAs NWs is low, as the SAE is accompanied by high proportions of empty holes, inclined NWs, and irregular blocks. In contrast, it is improved when the NW contains gallium, and the yield of vertical InxGa1-xAs NWs increased with higher Ga content. Meanwhile, unintentional Ga surface contamination on a patterned Si substrate induces high yield vertical InAs NW SAE, which is attributed to a GaAs-like seeding layer formed at the InAs/Si interface. The role of Ga played in the III-V NW nucleation on Si is further discussed. It stabilizes the B-polarity on a non-polar Si (111) surface and enhances the nuc...

[1]  Dimitri A. Antoniadis,et al.  Nanometer-Scale III-V MOSFETs , 2016, IEEE Journal of the Electron Devices Society.

[2]  Olmstead,et al.  Interface formation of GaAs with Si(100), Si(111), and Ge(111): Core-level spectroscopy for monolayer coverages of GaAs, Ga, and As. , 1987, Physical review. B, Condensed matter.

[3]  Jacobson,et al.  Location of atoms in the first monolayer of GaAs on Si. , 1987, Physical review letters.

[4]  J-P Zhang,et al.  Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy , 2010, Nanotechnology.

[5]  L. Wernersson,et al.  Self-seeded, position-controlled InAs nanowire growth on Si: A growth parameter study , 2011, Journal of crystal growth.

[6]  Yoshiaki Nakano,et al.  Effect of Ga content on crystal shape in micro-channel selective-area MOVPE of InGaAs on Si , 2008 .

[7]  Ferdinand Scholz,et al.  Origin of faceted surface hillocks on semi-polar (112¯2) GaN templates grown on pre-structured sapphire , 2015 .

[8]  M. Bichler,et al.  Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy , 2010 .

[9]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[10]  S. Gradečak,et al.  Effects of gold diffusion on n-type doping of GaAs nanowires. , 2010, Nano letters.

[11]  M. Bichler,et al.  Absence of vapor-liquid-solid growth during molecular beam epitaxy of self-induced InAs nanowires on Si , 2011 .

[12]  Xin Zhao,et al.  Nanometer-Scale Vertical-Sidewall Reactive Ion Etching of InGaAs for 3-D III-V MOSFETs , 2014, IEEE Electron Device Letters.

[13]  Zhong Lin Wang,et al.  Catalyst-Free Heteroepitaxial MOCVD Growth of InAs Nanowires on Si Substrates , 2014 .

[14]  L.-E. Wernersson,et al.  Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor With 50-nm Wrap Gate , 2008, IEEE Electron Device Letters.

[15]  Takashi Fukui,et al.  Control of InAs nanowire growth directions on Si. , 2008, Nano letters.

[16]  Peng Wang,et al.  High-resolution detection of Au catalyst atoms in Si nanowires. , 2008, Nature nanotechnology.

[17]  Lars Samuelson,et al.  Epitaxial III-V nanowires on silicon , 2004 .

[18]  R. LaPierre,et al.  Conditions for high yield of selective-area epitaxy InAs nanowires on SiOx/Si(111) substrates , 2015, Nanotechnology.

[19]  K. Mitsuishi,et al.  Polarity controlled InAs{111} films grown on Si(111) , 2011 .

[20]  Lars Samuelson,et al.  Au-free epitaxial growth of InAs nanowires. , 2006, Nano letters.

[21]  L. Romano,et al.  Influence of growth conditions, inversion domains, and atomic hydrogen on growth of (0001_) GaN by molecular beam epitaxy , 1998 .

[22]  D. Zehner,et al.  Preparation of atomically clean silicon surfaces by pulsed laser irradiation , 1980 .

[23]  Takashi Fukui,et al.  Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si(111) substrate , 2009, Nanotechnology.

[24]  P. Warburton,et al.  InAs1−xPx nanowires grown by catalyst-free molecular-beam epitaxy , 2013, Nanotechnology.

[25]  Peide D. Ye,et al.  Size-Dependent-Transport Study of $\hbox{In}_{0.53} \hbox{Ga}_{0.47}\hbox{As}$ Gate-All-Around Nanowire MOSFETs: Impact of Quantum Confinement and Volume Inversion , 2012, IEEE Electron Device Letters.

[26]  Hugo Bender,et al.  Controlled III/V Nanowire Growth by Selective-Area Vapor-Phase Epitaxy , 2009 .

[27]  K. Tomioka,et al.  Growth of InGaAs nanowires on Ge(111) by selective-area metal-organic vapor-phase epitaxy , 2017 .

[28]  T. Yamazaki,et al.  Investigation of Thermal Removal of Native Oxide from Si (100) Surfaces in Hydrogen for Low‐Temperature Si CVD Epitaxy , 1992 .

[29]  J. D. del Alamo,et al.  Alcohol-Based Digital Etch for III–V Vertical Nanowires With Sub-10 nm Diameter , 2017, IEEE Electron Device Letters.

[30]  O. Richard,et al.  Quantitative Method to Determine Planar Defect Frequency in InAs Nanowires by High Resolution X-ray Diffraction , 2015 .

[31]  M. H. van der Veen,et al.  Large‐area, catalyst‐free heteroepitaxy of InAs nanowires on Si by MOVPE , 2011 .

[32]  P. Krogstrup,et al.  Influence of the oxide layer for growth of self-assisted InAs nanowires on Si(111) , 2011, Nanoscale research letters.

[33]  Heike Riel,et al.  Si-InAs heterojunction Esaki tunnel diodes with high current densities , 2010 .

[34]  Angel Lopez,et al.  The multipurpose X-ray diffraction end-station of the BM25B-SpLine synchrotron beamline at the ESRF , 2013 .

[35]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[36]  M. Bichler,et al.  Rate-limiting mechanisms in high-temperature growth of catalyst-free InAs nanowires with large thermal stability , 2012, Nanotechnology.

[37]  M. Arlery,et al.  Transmission electron microscopy characterization of GaN layers grown by MOCVD on sapphire , 1997 .

[38]  H. Riel,et al.  InAs nanowire growth on oxide-masked 〈111〉 silicon , 2012 .