Local wave speed and bulk flow viscosity in Francis turbines at part load operation

ABSTRACT The operation of Francis turbines at off-design conditions may cause the development of a cavitation vortex rope in the draft tube cone, acting as a pressure excitation source. The interactions between this excitation source and the hydraulic system at the natural frequency may result in resonance phenomena, causing serious hydro-mechanical oscillations. One-dimensional draft tube models for the simulation and prediction of part load resonances require an accurate modelling of the wave speed and the bulk viscosity for the draft tube flow. This paper introduces a new methodology for determining these two hydroacoustic parameters in the draft tube of a reduced scale physical model of a Francis turbine, based on experimental identification of the hydraulic natural frequency of the test rig. Finally, dimensionless numbers are derived to define both the wave speed and bulk viscosity for different operating points of the turbine.

[1]  Yoshinobu Tsujimoto,et al.  Cavitation surge modelling in Francis turbine draft tube , 2014 .

[2]  Christophe Nicolet,et al.  Experimental investigation of the local wave speed in a draft tube with cavitation vortex rope , 2014 .

[3]  Andres Müller,et al.  On the physical mechanisms governing self-excited pressure surge in Francis turbines , 2014 .

[4]  Andres Müller,et al.  Hydro-acoustic resonance behavior in presence of a precessing vortex rope: observation of a lock-in phenomenon at part load Francis turbine operation , 2014 .

[5]  Brij Lal,et al.  A textbook of sound , 1995 .

[6]  Christophe Nicolet,et al.  Influence of the Francis turbine location under vortex rope excitation on the hydraulic system stability , 2009 .

[7]  Giuseppe Pezzinga,et al.  Second viscosity in transient cavitating pipe flows , 2003 .

[8]  E. Benjamin Wylie,et al.  Fluid Transients in Systems , 1993 .

[9]  Andres Müller,et al.  Draft tube discharge fluctuation during self-sustained pressure surge: fluorescent particle image velocimetry in two-phase flow , 2013 .

[10]  Christophe Nicolet,et al.  Overload Surge Event in a Pumped-Storage Power Plant , 2006 .

[11]  Christophe Nicolet,et al.  Forced response analysis of hydroelectric systems , 2014 .

[12]  Jean-Pierre Franc,et al.  La cavitation : mécanismes physiques et aspects industriels , 1995 .

[13]  Sébastien Alligné,et al.  Forced and Self Oscillations of Hydraulic Systems Induced by Cavitation Vortex Rope of Francis Turbines , 2011 .

[14]  Gino Blommaert,et al.  ETUDE DU COMPORTEMENT DYNAMIQUE DES TURBINES FRANCIS: CONTRÔLE ACTIF DE LEUR STABILITÉ DE FONCTIONNEMENT , 2000 .

[15]  Christophe Nicolet,et al.  Stability Study of Francis Pump-Turbine at Runaway , 2009 .

[16]  M. Plesset,et al.  On the Propagation of Sound in a Liquid Containing Gas Bubbles , 1961 .

[17]  Peter Dörfler,et al.  Flow-Induced Pulsation and Vibration in Hydroelectric Machinery: Engineer’s Guidebook for Planning, Design and Troubleshooting , 2012 .

[18]  Yoshinobu Tsujimoto,et al.  One-Dimensional Analysis of Full Load Draft Tube Surge , 2007 .

[19]  Christian Landry Hydroacoustic Modeling of a Cavitation Vortex Rope for a Francis Turbine , 2015 .

[20]  A. Fritsch,et al.  Comportement dynamique d'une turbine Francis à charge partielle. Comparaison modèle-prototype , 1988 .

[21]  Yoshinobu Tsujimoto,et al.  Experimental method for the evaluation of the dynamic transfer matrix using pressure transducers , 2015 .

[22]  H. J. Rath,et al.  Unsteady pressure waves and shock waves in elastic tubes containing bubbly air-water mixtures , 1981 .