Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects☆

[1]  K. Togashi,et al.  Visualization of Lenticulostriate Arteries by Flow-Sensitive Black-Blood MR Angiography on a 1.5T MRI System: A Comparative Study between Subjects with and without Stroke , 2013, American Journal of Neuroradiology.

[2]  Karl Rohr,et al.  Measurements of lenticulostriate arteries using 7T MRI: new imaging markers for subcortical vascular dementia , 2012, Journal of the Neurological Sciences.

[3]  D. Werring,et al.  Cerebral microbleed detection and mapping: Principles, methodological aspects and rationale in vascular dementia , 2012, Experimental Gerontology.

[4]  J. Wardlaw,et al.  Identification of mineral deposits in the brain on radiological images: a systematic review , 2012, European Radiology.

[5]  Joanna M. Wardlaw,et al.  Brain iron deposits are associated with general cognitive ability and cognitive aging , 2012, Neurobiology of Aging.

[6]  S. Schneider,et al.  Neuroimaging Features of Neurodegeneration with Brain Iron Accumulation , 2012, American Journal of Neuroradiology.

[7]  I. Deary,et al.  Brain Aging, Cognition in Youth and Old Age and Vascular Disease in the Lothian Birth Cohort 1936: Rationale, Design and Methodology of the Imaging Protocol* , 2011, International journal of stroke : official journal of the International Stroke Society.

[8]  Massimo Filippi,et al.  7. Mri Assessment of Iron Deposition in Multiple Sclerosis , 2022 .

[9]  E Mark Haacke,et al.  Semiautomated detection of cerebral microbleeds in magnetic resonance images. , 2011, Magnetic resonance imaging.

[10]  Stephen M. Smith,et al.  A Bayesian model of shape and appearance for subcortical brain segmentation , 2011, NeuroImage.

[11]  Grant McAuley,et al.  Iron quantification of microbleeds in postmortem brain , 2011, Magnetic resonance in medicine.

[12]  D. Leys,et al.  Comparison of 7.0-T T2*-Magnetic Resonance Imaging of Cerebral Bleeds in Post-Mortem Brain Sections of Alzheimer Patients with Their Neuropathological Correlates , 2011, Cerebrovascular Diseases.

[13]  Ferdinand Schweser,et al.  Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism? , 2011, NeuroImage.

[14]  D. Louis Collins,et al.  Trimmed-Likelihood Estimation for Focal Lesions and Tissue Segmentation in Multisequence MRI for Multiple Sclerosis , 2011, IEEE Transactions on Medical Imaging.

[15]  Francesca M Chappell,et al.  Reliability of two techniques for assessing cerebral iron deposits with structural magnetic resonance imaging , 2011, Journal of magnetic resonance imaging : JMRI.

[16]  S. Ropele,et al.  Quantitative MR imaging of brain iron: a postmortem validation study. , 2010, Radiology.

[17]  Peter R Luijten,et al.  Visualization of cerebral microbleeds with dual‐echo T2*‐weighted magnetic resonance imaging at 7.0 T , 2010, Journal of magnetic resonance imaging : JMRI.

[18]  J. Hajnal,et al.  A robust method to estimate the intracranial volume across MRI field strengths (1.5T and 3T) , 2010, NeuroImage.

[19]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[20]  C. Cordonnier Brain microbleeds , 2010, Practical Neurology.

[21]  E. Mark Haacke,et al.  Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study , 2010, Acta Neuropathologica.

[22]  Yi Wang,et al.  Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: Validation and application to brain imaging , 2010, Magnetic resonance in medicine.

[23]  Bejoy Thomas,et al.  Principles, techniques, and applications of T2*-based MR imaging and its special applications. , 2009, Radiographics : a review publication of the Radiological Society of North America, Inc.

[24]  Maria Grazia Bruzzone,et al.  Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. , 2009, Radiology.

[25]  Arthur W. Toga,et al.  Online resource for validation of brain segmentation methods , 2009, NeuroImage.

[26]  Peter Caravan,et al.  Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. , 2009, Contrast media & molecular imaging.

[27]  F. Admiraal-Behloul,et al.  Caudate nucleus hypointensity in the elderly is associated with markers of neurodegeneration on MRI , 2008, Neurobiology of Aging.

[28]  E. Haacke,et al.  Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. , 2008, AJNR. American journal of neuroradiology.

[29]  Anil F. Ramlackhansingh,et al.  Lesion identification using unified segmentation-normalisation models and fuzzy clustering , 2008, NeuroImage.

[30]  Heinz-Otto Peitgen,et al.  Evaluation of accuracy in partial volume analysis of small objects , 2008, SPIE Medical Imaging.

[31]  Ernesto Bribiesca,et al.  An easy measure of compactness for 2D and 3D shapes , 2008, Pattern Recognit..

[32]  D. Kido,et al.  Mineralization of the Deep Gray Matter with Age: A Retrospective Review with Susceptibility-Weighted MR Imaging , 2008, American Journal of Neuroradiology.

[33]  P. Visscher,et al.  The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond , 2007, BMC geriatrics.

[34]  J. Wardlaw,et al.  Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. , 2007, Brain : a journal of neurology.

[35]  Shigeru Shinomoto,et al.  A Method for Selecting the Bin Size of a Time Histogram , 2007, Neural Computation.

[36]  Jim Mintz,et al.  Brain ferritin iron may influence age- and gender-related risks of neurodegeneration , 2007, Neurobiology of Aging.

[37]  Bostjan Likar,et al.  A Review of Methods for Correction of Intensity Inhomogeneity in MRI , 2007, IEEE Transactions on Medical Imaging.

[38]  F. Schick,et al.  Geometry and extension of signal voids in MR images induced by aggregations of magnetically labelled cells , 2006, Physics in medicine and biology.

[39]  T. Rouault,et al.  Brain iron metabolism. , 2006, Seminars in pediatric neurology.

[40]  Rohit Bakshi,et al.  Magnetic Resonance Imaging of Iron Deposition in Neurological Disorders , 2006, Topics in magnetic resonance imaging : TMRI.

[41]  Timothy G Reese,et al.  Imaging myocardial fiber disarray and intramural strain hypokinesis in hypertrophic cardiomyopathy with MRI , 2006, Journal of magnetic resonance imaging : JMRI.

[42]  Shih-Wei Hsu,et al.  Tertiary microvascular territories define lacunar infarcts in the basal ganglia , 2005, Annals of neurology.

[43]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[44]  Mia Hubert,et al.  LIBRA: a MATLAB library for robust analysis , 2005 .

[45]  J. Schenck,et al.  High‐field magnetic resonance imaging of brain iron: birth of a biomarker? , 2004, NMR in biomedicine.

[46]  J. Connor,et al.  Iron, brain ageing and neurodegenerative disorders , 2004, Nature Reviews Neuroscience.

[47]  Pierre Hellier,et al.  Consistent intensity correction of MR images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[48]  Julio M. Araque,et al.  Mineralization of the basal ganglia: implications for neuropsychiatry, pathology and neuroimaging , 2003, Psychiatry Research.

[49]  Kaung-Ti Yung Empirical models of transverse relaxation for spherical magnetic perturbers. , 2003, Magnetic resonance imaging.

[50]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[51]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[52]  Guido Gerig,et al.  Level-set evolution with region competition: automatic 3-D segmentation of brain tumors , 2002, Object recognition supported by user interaction for service robots.

[53]  J. Vymazal,et al.  Differentiation between hemosiderin- and ferritin-bound brain iron using nuclear magnetic resonance and magnetic resonance imaging. , 2000, Cellular and molecular biology.

[54]  J R Reichenbach,et al.  Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. , 1997, Radiology.

[55]  H B Jones,et al.  The topography, structure and incidence of mineralized bodies in the basal ganglia of the brain of cynomolgus monkeys (Macaca fascicularis) , 1995, Laboratory animals.

[56]  B. Rosen,et al.  Microscopic susceptibility variation and transverse relaxation: Theory and experiment , 1994, Magnetic resonance in medicine.

[57]  J. Gore,et al.  Intravascular susceptibility contrast mechanisms in tissues , 1994, Magnetic resonance in medicine.

[58]  R. Henkelman,et al.  High signal intensity in MR images of calcified brain tissue. , 1991, Radiology.

[59]  G A Johnson,et al.  MRI of brain iron. , 1986, AJR. American journal of roentgenology.

[60]  M. Milisavljević,et al.  Perforating branches of the middle cerebral artery. Microanatomy and clinical significance of their intracerebral segments. , 1985, Stroke.

[61]  M. Stone The Opinion Pool , 1961 .

[62]  B. Hallgren,et al.  THE EFFECT OF AGE ON THE NON‐HAEMIN IRON IN THE HUMAN BRAIN , 1958, Journal of neurochemistry.

[63]  J. A. Wagner,et al.  THE INCIDENCE, COMPOSITION, AND PATHOLOGICAL SIGNIFICANCE OF INTRACEREBRAL VASCULAR DEPOSITS IN THE BASAL GANGLIA*,† , 1956, Journal of neuropathology and experimental neurology.

[64]  H. Wadell Volume, Shape, and Roundness of Rock Particles , 1932, The Journal of Geology.

[65]  Joanna M. Wardlaw,et al.  Reliability of two techniques for assessing cerebral iron deposits from structural MRI , 2011 .

[66]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[67]  Fudi Wang,et al.  Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. , 2010, Future medicinal chemistry.

[68]  Joachim Hornegger,et al.  Nonrigid Registration of Joint Histograms for Intensity Standardization in Magnetic Resonance Imaging , 2009, IEEE Transactions on Medical Imaging.

[69]  Saiful Islam,et al.  Mahalanobis Distance , 2009, Encyclopedia of Biometrics.

[70]  C. Jack,et al.  Alzheimer's Disease Neuroimaging Initiative , 2008 .

[71]  E. Haacke,et al.  Imaging iron stores in the brain using magnetic resonance imaging. , 2005, Magnetic resonance imaging.

[72]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[73]  O. Divitiis,et al.  Territories of the perforating (lenticulostriate) branches of the middle cerebral artery , 1998, Surgical and Radiologic Anatomy.

[74]  C. Morris,et al.  Histochemical distribution of non-haem iron in the human brain. , 1992, Acta anatomica.