Superlinear PCG Algorithms: Symmetric Part Preconditioning and Boundary Conditions

The superlinear convergence of the preconditioned CGM is studied for nonsymmetric elliptic problems (convection-diffusion equations) with mixed boundary conditions. A mesh independent rate of superlinear convergence is given when symmetric part preconditioning is applied to the FEM discretizations of the BVP. This is the extension of a similar result of the author for Dirichlet problems. The discussion relies on suitably developed Hilbert space theory for linear operators.

[1]  Tuomo Rossi,et al.  A Parallel Fast Direct Solver for Block Tridiagonal Systems with Separable Matrices of Arbitrary Dimension , 1999, SIAM J. Sci. Comput..

[2]  Y. Saad,et al.  Conjugate gradient-like algorithms for solving nonsymmetric linear systems , 1985 .

[3]  P. Swarztrauber THE METHODS OF CYCLIC REDUCTION, FOURIER ANALYSIS AND THE FACR ALGORITHM FOR THE DISCRETE SOLUTION OF POISSON'S EQUATION ON A RECTANGLE* , 1977 .

[4]  O. Axelsson,et al.  ON THE RATE OF CONVERGENCE OF THE CONJUGATE GRADIENT METHOD FOR LINEAR OPERATORS IN HILBERT SPACE , 2002 .

[5]  Thomas A. Manteuffel,et al.  Optimal equivalent preconditioners , 1993 .

[6]  D. Rose,et al.  Marching Algorithms for Elliptic Boundary Value Problems. I: The Constant Coefficient Case , 1977 .

[7]  Tamás Kurics,et al.  Superlinearly convergent PCG algorithms for some nonsymmetric elliptic systems , 2008 .

[8]  Thomas A. Manteuffel,et al.  Preconditioning and boundary conditions without H 2 estimates: L 2 condition numbers and the distribution of the singular values , 1993 .

[9]  Zenon Fortuna Some Convergence Properties of the Conjugate Gradient Method in Hilbert Space , 1979 .

[10]  O. Nevanlinna Convergence of Iterations for Linear Equations , 1993 .

[11]  O. Widlund,et al.  On finite element domain imbedding methods , 1990 .

[12]  Frédéric Riesz,et al.  Vorlesungen über Funktionalanalysis , 1982 .

[13]  O. Axelsson A generalized conjugate gradient, least square method , 1987 .

[14]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[15]  János Karátson On the Superlinear Convergence Rate of the Preconditioned CGM for Some Nonsymmetric Elliptic Problems , 2007 .

[16]  János Karátson,et al.  Mesh independent superlinear convergence estimates of the conjugate gradient method for some equivalent self-adjoint operators , 2005 .

[17]  Gene H. Golub,et al.  A generalized conjugate gradient method for non-symmetric systems of linear equations , 2007, Milestones in Matrix Computation.

[18]  B. L. Buzbee,et al.  The Direct Solution of the Biharmonic Equation on Rectangular Regions and the Poisson Equation on Irregular Regions , 1974 .

[19]  M. Schultz,et al.  Preconditioning by fast direct methods for nonself-adjoint nonseparable elliptic equations , 1986 .

[20]  W. Hackbusch Elliptic Differential Equations , 1992 .

[21]  T. Manteuffel,et al.  Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .

[22]  O. Widlund A Lanczos Method for a Class of Nonsymmetric Systems of Linear Equations , 1978 .

[23]  J. Daniel The Conjugate Gradient Method for Linear and Nonlinear Operator Equations , 1967 .

[24]  Owe Axelsson,et al.  On the sublinear and superlinear rate of convergence of conjugate gradient methods , 2000, Numerical Algorithms.

[25]  Thomas A. Manteuffel,et al.  On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations , 1990 .

[26]  Owe Axelsson,et al.  Superlinearly convergent CG methods via equivalent preconditioning for nonsymmetric elliptic operators , 2004, Numerische Mathematik.

[27]  Owe Axelsson,et al.  Mesh Independent Superlinear PCG Rates Via Compact-Equivalent Operators , 2007, SIAM J. Numer. Anal..

[28]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[29]  I. Gohberg,et al.  Classes of Linear Operators , 1990 .

[30]  J. Karátson,et al.  Symmetric Part Preconditioning for the Conjugate Gradient Method in Hilbert Space , 2003 .

[31]  H. V. D. Vorst,et al.  Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from PDE-problems☆ , 1981 .

[32]  R. Winther Some Superlinear Convergence Results for the Conjugate Gradient Method , 1980 .

[33]  V. A. Barker,et al.  Finite element solution of boundary value problems , 1984 .

[34]  Ivan Lirkov,et al.  A Parallel Algorithm for Systems of Convection-Diffusion Equations , 2006, Numerical Methods and Applications.

[35]  E. Christiansen,et al.  Handbook of Numerical Analysis , 1996 .