The Development of Neutron Radiography and Tomography on a SLOWPOKE-2 Reactor☆

Abstract Development of neutron radiography at the Royal Military College of Canada (RMC) started by trying to interest the Royal Canadian Air Force (RCAF) in this new non-destructive testing (NDT) technique. A Californium-252 based device was ordered and then installed at RMC for development of applicable techniques for aircraft by the first author. A second and transportable device was then designed, modified and used in trials at RCAF Bases and other locations for one year. This activity was the only foreign loan of the U.S. Californium Loan Program. Around this time, SLOWPOKE-2 reactors were being installed at four Canadian universities, while a new science and engineering building was being built at RMC. A reactor pool was incorporated and efforts to procure a reactor succeeded a decade later with a SLOWPOKE-2 reactor being installed at RMC. The only modification by the vendor for RMC was a thermal column replacing an irradiation site inside the reactor container for a later installation of a neutron beam tube (NBT). Development of a working NBT took several years, starting with the second author. A demonstration of the actual worth of neutron radiography took place with a CF-18 Hornet aircraft being neutron and X-radiographed at McClellan Air Force Base, Sacramento, CA. This inspection was followed by one of the rudders that had indications of water ingress being radiographed successfully at RMC just after the NBT became functional. The next step was to develop a neutron radioscopy system (NRS), initially employing film and then digital imaging, and is in use today for all flight control surfaces (FCS). With the third author, a technique capable of removing water from affected FCS was developed at RMC. Heating equipment and a vacuum system were utilized to carefully remove the water. This technique was proven using a sequence of near real time neutron images obtained during the drying process. The results of the drying process were correlated with a relative humidity gauge and an NDT technique that could be performed at Canadian Forces (CF) Bases was developed. In order to determine the structural integrity of the component having undergone this water removal, further research was required into the effect of water inside composite honeycomb structures. This need has led to the present development of neutron tomography on the reactor at RMC, which is capable of determining the exact location of water ingress inside composite components. This technique has been successfully applied to coupons as well as to complete rudders.