Energy, chemical disequilibrium, and geological constraints on Europa.

Europa is a prime target for astrobiology. The presence of a global subsurface liquid water ocean and a composition likely to contain a suite of biogenic elements make it a compelling world in the search for a second origin of life. Critical to these factors, however, may be the availability of energy for biological processes on Europa. We have examined the production and availability of oxidants and carbon-containing reductants on Europa to better understand the habitability of the subsurface ocean. Data from the Galileo Near-Infrared Mapping Spectrometer were used to constrain the surface abundance of CO(2) to 0.036% by number relative to water. Laboratory results indicate that radiolytically processed CO(2)-rich ices yield CO and H(2)CO(3); the reductants H(2)CO, CH(3)OH, and CH(4) are at most minor species. We analyzed chemical sources and sinks and concluded that the radiolytically processed surface of Europa could serve to maintain an oxidized ocean even if the surface oxidants (O(2), H(2)O(2), CO(2), SO(2), and SO(4) (2)) are delivered only once every approximately 0.5 Gyr. If delivery periods are comparable to the observed surface age (30-70 Myr), then Europa's ocean could reach O(2) concentrations comparable to those found in terrestrial surface waters, even if approximately 10(9) moles yr(1) of hydrothermally delivered reductants consume most of the oxidant flux. Such an ocean would be energetically hospitable for terrestrial marine macrofauna. The availability of reductants could be the limiting factor for biologically useful chemical energy on Europa.

[1]  E. Gaidos,et al.  Strike‐slip motion and double ridge formation on Europa , 2002 .

[2]  C. Chyba,et al.  Possible ecosystems and the search for life on Europa. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Baragiola,et al.  Laboratory studies of the optical properties and stability of oxygen on Ganymede , 1998 .

[4]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[5]  Everett L. Shock,et al.  Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa , 2003 .

[6]  Robert E. Johnson Energetic Charged-Particle Interactions with Atmospheres and Surfaces , 1990 .

[7]  W. Calvin,et al.  - 1-Condensed O 2 on Europa and Callisto , 2022 .

[8]  J. Brucato,et al.  Carbonic Acid by Ion Implantation in Water/Carbon Dioxide Ice Mixtures☆ , 1997 .

[9]  T. Spohn,et al.  Thermal-orbital evolution of Io and Europa , 2004 .

[10]  S. Sandford,et al.  An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions. , 1993, Icarus.

[11]  Jeffrey S. Kargel,et al.  Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life , 2000 .

[12]  R. Greeley,et al.  Geological evidence for solid-state convection in Europa's ice shell , 1998, Nature.

[13]  W. McKinnon,et al.  Convective instability in Europa's floating ice shell , 1997 .

[14]  M. Kivelson,et al.  Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations , 2000 .

[15]  Christopher P. McKay,et al.  On the habitability of Europa , 1983 .

[16]  C. Chyba,et al.  Energy for microbial life on Europa , 2000, Nature.

[17]  Tilman Spohn,et al.  Oceans in the icy Galilean satellites of Jupiter , 2002 .

[18]  Elisabetta Pierazzo,et al.  Cometary Delivery of Biogenic Elements to Europa , 2002 .

[19]  R. E. Johnson Comment on “Laboratory studies of the optical properties and stability of oxygen on Ganymede” by Raul A. Baragiola and David A. Bahr , 1999 .

[20]  A. McEwen,et al.  The search for current geologic activity on Europa , 2000 .

[21]  Robert T. Pappalardo,et al.  Cryomagmatic Mechanisms for the Formation of Rhadamanthys Linea, Triple Band Margins, and Other Low-Albedo Features on Europa , 2000 .

[22]  P. Ehrenfreund,et al.  The infrared band strengths of CH_3OH, NH_3 and CH_4 in laboratory simulations of astrophysical ice mixtures , 1999 .

[23]  P. D. Feldman,et al.  Detection of an oxygen atmosphere on Jupiter's moon Europa , 1995, Nature.

[24]  Michael H. Wong,et al.  Radiation effects on the surfaces of the Galilean satellites , 2004 .

[25]  J. Childress Oxygen Minimum Layer: Vertical Distribution and Respiration of the Mysid Gnathophausia ingens , 1968, Science.

[26]  J. Childress,et al.  Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. , 1998, The Journal of experimental biology.

[27]  Scott A. Sandford,et al.  Organic Compounds Produced by Photolysis of Realistic Interstellar and Cometary Ice Analogs Containing Methanol , 1995 .

[28]  Christopher F Chyba,et al.  Clathrate hydrates of oxidants in the ice shell of Europa. , 2006, Astrobiology.

[29]  Zhang Guang-wei,et al.  AN OFF-AXIS HYDROTHERMAL VENT FIELD NEAR THE MID-ATLANTIC RIDGE AT 30°N , 2002 .

[30]  M. Moore,et al.  Infrared Study of Ion-Irradiated Water-Ice Mixtures with Hydrocarbons Relevant to Comets , 1998 .

[31]  R E Johnson,et al.  Hydrogen peroxide on the surface of Europa. , 1999, Science.

[32]  Kevin Zahnle,et al.  Cratering Rates in the Outer Solar System , 1999 .

[33]  Everett L. Shock,et al.  A model for low-temperature biogeochemistry of sulfur, carbon, and iron on Europa , 2004 .

[34]  J. Nuth,et al.  Infrared spectra of proton irradiated ices containing methanol , 1996 .

[35]  D. Randall,et al.  Mission to planet Earth: Role of clouds and radiation in climate , 1995 .

[36]  Thomas M. McCollom,et al.  Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa , 1999 .

[37]  J. Kargel,et al.  Enceladus: Cosmic Gymnast, Volatile Miniworld , 2006, Science.

[38]  Robert T. Pappalardo,et al.  Geology of Europa , 2004 .

[39]  Deborah S. Kelley,et al.  An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N , 2001, Nature.

[40]  D. J. Fixsen,et al.  Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS) , 1998, astro-ph/9810373.

[41]  M. Moore,et al.  Infrared and mass spectral studies of proton irradiated H2O + CO2 ice: Evidence for carbonic acid , 1991 .

[42]  Richard J. Greenberg,et al.  Habitability of Europa's crust: The role of tidal‐tectonic processes , 2000 .

[43]  E. Shock,et al.  Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. , 1997, Geochimica et cosmochimica acta.

[44]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[45]  David P. O'Brien,et al.  A melt-through model for chaos formation on Europa , 2002 .

[46]  Jeffrey S. Kargel,et al.  Brine volcanism and the interior structures of asteroids and icy satellites , 1991 .

[47]  Patrick Minnis,et al.  Changes in Earth's Albedo Measured by Satellite , 2005, Science.

[48]  Spencer,et al.  Temperatures on europa from galileo photopolarimeter-radiometer: nighttime thermal anomalies , 1999, Science.

[49]  K. P. Hand,et al.  Empirical constraints on the salinity of the europan ocean and implications for a thin ice shell , 2007 .

[50]  Henry B. Garrett,et al.  Energetic Ion and Electron Irradiation of the Icy Galilean Satellites , 2001 .

[51]  Paul M. Schenk,et al.  Ages and interiors: the cratering record of the Galilean satellites , 2007 .

[52]  W. R. Thompson,et al.  Organic solids produced from simple C/H/O/N ices by charged particles: applications to the outer solar system. , 1989, Advances in space research : the official journal of the Committee on Space Research.

[53]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[54]  J. Kirschvink,et al.  Life in Ice-Covered Oceans , 1999, Science.

[55]  C. Hansen,et al.  Enceladus' Water Vapor Plume , 2006, Science.

[56]  M. Moore,et al.  Studies of proton irradiated H2O + CO2 and H2O + CO ices and analysis of synthesized molecules , 1990 .

[57]  B. R. Tufts,et al.  Evidence for a subsurface ocean on Europa , 1998, Nature.

[58]  V. Lipenkov,et al.  On the stability of air clathrate-hydrate crystals in subglacial lake Vostok, Antarctica , 2001 .

[59]  T. Matsuo,et al.  Calorimetric study of the glassy state X. Enthalpy relaxation at the glass-transition temperature of hexagonal ice☆ , 1974 .

[60]  Steven W. Squyres,et al.  Liquid water and active resurfacing on Europa , 1982, Nature.

[61]  S. Stein,et al.  Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow , 1994 .

[62]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[63]  D. Stevenson,et al.  Gas-driven water volcanism and the resurfacing of Europa , 1985 .

[64]  R. W. Carlsona,et al.  Distribution of hydrate on Europa : Further evidence for sulfuric acid hydrate , 2005 .

[65]  M. Moore,et al.  Carbonic acid production in H_2O:CO_2 ices. UV photolysis vs. proton bombardment , 2000 .

[66]  D. E. Milligan,et al.  Infrared Spectrum and Structure of the Species CO3 , 1971 .

[67]  M. J. Berger ESTAR, PSTAR, and ASTAR: Computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions , 1992 .

[68]  Robert W. Carlson,et al.  Electron bombardment of Europa , 2001 .

[69]  A. Schultz,et al.  Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean , 1996 .