Decoder-Tailored Polar Code Design Using the Genetic Algorithm

We present a new framework for constructing polar codes (i.e., selecting the frozen bit positions) for arbitrary channels, tailored to a given decoding algorithm rather than assuming the (not necessarily optimal) successive cancellation (SC) decoding. The proposed framework is based on the genetic algorithm (GenAlg), where populations (i.e., collections) of information sets evolve via evolutionary transformations based on their individual error-rate performance. These populations converge toward an information set that fits both the decoding behavior and the defined channel. We construct polar codes, without the CRC-aid, tailored to plain successive cancellation list (SCL) decoding, achieving the same error-rate performance as the CRC-aided SCL decoding over both the AWGN channel and the Rayleigh channel, respectively. Furthermore, a proposed belief propagation (BP)-tailored construction approaches the SCL error-rate performance without any modifications in the decoding algorithm itself. The performance gains can be attributed to the significant reduction in the number of low-weight codewords. We show that, when required, the GenAlg can also be set up to find codes that reduce the decoding complexity. This way, the SCL list size or the number of BP iterations can be reduced while maintaining the same error-rate performance.

[1]  Paul H. Siegel,et al.  Polar Code Constructions Based on LLR Evolution , 2017, IEEE Communications Letters.

[2]  Warren J. Gross,et al.  Decoder Partitioning: Towards Practical List Decoding of Polar Codes , 2018, IEEE Transactions on Communications.

[3]  Peter Trifonov,et al.  Efficient Design and Decoding of Polar Codes , 2012, IEEE Transactions on Communications.

[4]  Stephan ten Brink,et al.  Combining belief propagation and successive cancellation list decoding of polar codes on a GPU platform , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  Ying Li,et al.  Construction and Block Error Rate Analysis of Polar Codes Over AWGN Channel Based on Gaussian Approximation , 2014, IEEE Communications Letters.

[6]  L. Hebbes,et al.  Genetic Algorithms for Turbo Codes , 2005, EUROCON 2005 - The International Conference on "Computer as a Tool".

[7]  Stephan ten Brink,et al.  Flexible Length Polar Codes through Graph Based Augmentation , 2016, ArXiv.

[8]  Bin Li,et al.  A RM-Polar Codes , 2014, ArXiv.

[9]  Kenneth DeJong,et al.  Discovery of maximal distance codes using genetic algorithms , 1990, [1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence.

[10]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[11]  Liu Jianqin,et al.  Premature convergence in genetic algorithm: analysis and prevention based on chaos operator , 2000, Proceedings of the 3rd World Congress on Intelligent Control and Automation (Cat. No.00EX393).

[12]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[13]  Christian Schürch,et al.  A partial order for the synthesized channels of a polar code , 2016, ISIT.

[14]  Alexios Balatsoukas-Stimming,et al.  Hardware Architecture for List Successive Cancellation Decoding of Polar Codes , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  Keshab K. Parhi,et al.  Early Stopping Criteria for Energy-Efficient Low-Latency Belief-Propagation Polar Code Decoders , 2014, IEEE Transactions on Signal Processing.

[16]  Ayoub Otmani,et al.  Algebraic properties of polar codes from a new polynomial formalism , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[17]  E. Arkan,et al.  A performance comparison of polar codes and Reed-Muller codes , 2008, IEEE Communications Letters.

[18]  Chi-Ying Tsui,et al.  Hardware decoders for polar codes: An overview , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[19]  Rüdiger L. Urbanke,et al.  From polar to Reed-Muller codes: A technique to improve the finite-length performance , 2014, 2014 IEEE International Symposium on Information Theory.

[20]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[21]  Bin Li,et al.  An Adaptive Successive Cancellation List Decoder for Polar Codes with Cyclic Redundancy Check , 2012, IEEE Communications Letters.

[22]  Vera Miloslavskaya,et al.  Sequential Decoding of Polar Codes , 2014, IEEE Communications Letters.

[23]  Paul H. Siegel,et al.  Enhanced belief propagation decoding of polar codes through concatenation , 2014, 2014 IEEE International Symposium on Information Theory.

[24]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[25]  Lothar Thiele,et al.  A Comparison of Selection Schemes Used in Evolutionary Algorithms , 1996, Evolutionary Computation.

[26]  Toshiyuki Tanaka,et al.  Performance of polar codes with the construction using density evolution , 2009, IEEE Communications Letters.

[27]  Jingbo Liu,et al.  Frozen bits selection for polar codes based on simulation and BP decoding , 2017, IEICE Electron. Express.

[28]  Tao Jiang,et al.  Parity-Check-Concatenated Polar Codes , 2016, IEEE Communications Letters.

[29]  Gianluigi Liva,et al.  Code Design for Short Blocks: A Survey , 2016, ArXiv.

[30]  Yi Hong,et al.  A Comparative Study of Polar Code Constructions for the AWGN Channel , 2015, ArXiv.

[31]  Alexander Vardy,et al.  Fast List Decoders for Polar Codes , 2015, IEEE Journal on Selected Areas in Communications.

[32]  Alexios Balatsoukas-Stimming,et al.  Comparison of Polar Decoders with Existing Low-Density Parity-Check and Turbo Decoders , 2017, 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW).

[33]  Rüdiger L. Urbanke,et al.  Construction of polar codes with sublinear complexity , 2016, 2017 IEEE International Symposium on Information Theory (ISIT).

[34]  Kishan G. Mehrotra,et al.  Genetic Algorithms for Soft-Decision Decoding of Linear Block Codes , 1994, Evolutionary Computation.

[35]  Lucía Isabel Passoni,et al.  A genetic-algorithm based decoder for low density parity check codes , 2006 .

[36]  Georg Böcherer,et al.  Polar Code Construction for List Decoding , 2017, ArXiv.

[37]  Erdal Arikan,et al.  Systematic Polar Coding , 2011, IEEE Communications Letters.

[38]  Zhengya Zhang,et al.  Designing Practical Polar Codes Using Simulation-Based Bit Selection , 2017, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[39]  Lele Wang,et al.  Universal polarization , 2014, ISIT.

[40]  Alexander Vardy,et al.  On the stopping distance and the stopping redundancy of codes , 2006, IEEE Transactions on Information Theory.

[41]  Stephan ten Brink,et al.  Improving Belief Propagation decoding of polar codes using scattered EXIT charts , 2016, 2016 IEEE Information Theory Workshop (ITW).

[42]  Alexander Vardy,et al.  List decoding of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[43]  Valerio Bioglio,et al.  Design of Polar Codes in 5G New Radio , 2018, IEEE Communications Surveys & Tutorials.

[44]  Peter Trifonov,et al.  Design of polar codes for Rayleigh fading channel , 2015, 2015 International Symposium on Wireless Communication Systems (ISWCS).

[45]  Kai Chen,et al.  Polar codes: Primary concepts and practical decoding algorithms , 2014, IEEE Communications Magazine.

[46]  Ángel M. Bravo-Santos Polar Codes for the Rayleigh Fading Channel , 2013, IEEE Communications Letters.

[47]  Jean-Claude Belfiore,et al.  Minimum-Distance Based Construction of Multi-Kernel Polar Codes , 2017, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[48]  Ahmed Elkelesh,et al.  Belief Propagation List Decoding of Polar Codes , 2018, IEEE Communications Letters.

[49]  Stephan ten Brink,et al.  Mitigating clipping effects on error floors under belief propagation decoding of polar codes , 2017, 2017 International Symposium on Wireless Communication Systems (ISWCS).

[50]  ThieleLothar,et al.  A comparison of selection schemes used in evolutionary algorithms , 1996 .

[51]  Vera Miloslavskaya,et al.  Polar Subcodes , 2015, IEEE Journal on Selected Areas in Communications.

[52]  Lalit M. Patnaik,et al.  Genetic algorithms: a survey , 1994, Computer.

[53]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[54]  Jun Wang,et al.  Beta-Expansion: A Theoretical Framework for Fast and Recursive Construction of Polar Codes , 2017, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[55]  Stephan ten Brink,et al.  Genetic Algorithm-based Polar Code Construction for the AWGN Channel , 2019, ArXiv.

[56]  F. Elbouanani,et al.  On the decoding of convolutional codes using genetic algorithms , 2008, 2008 International Conference on Computer and Communication Engineering.