A 0.4 $\mu \text{g}$ Bias Instability and 1.2 $\mu \text{g}/\surd $ Hz Noise Floor MEMS Silicon Oscillating Accelerometer With CMOS Readout Circuit

This paper describes a silicon-on-insulator MEMS oscillating accelerometer with a fully differential CMOS continuous-time oscillation sustaining circuit and a digital frequency measurement circuit. To reduce the amplitude-stiffness-induced frequency variation, the effects of flicker noise in the automatic amplitude control circuit are classified into additive and multiplicative components, which are suppressed by chopper stabilization and tail current source free structures, respectively. A low-power digital frequency measurement circuit employing a time-domain <inline-formula> <tex-math notation="LaTeX">$\Sigma \Delta $ </tex-math></inline-formula> ADC is integrated on chip. The accelerometer achieves a bias instability of 0.4/2 <inline-formula> <tex-math notation="LaTeX">$\mu \text{g}$ </tex-math></inline-formula>, a bias stability of 4.13/13.2 <inline-formula> <tex-math notation="LaTeX">$\mu \text{g}$ </tex-math></inline-formula>, and a noise floor of 1.2/2.6 <inline-formula> <tex-math notation="LaTeX">$\mu \text{g} / \surd $ </tex-math></inline-formula>Hz, as measured from the analog/digital outputs, respectively, with a scale factor of 280 Hz/g and a full scale of ±20 g. The chip is fabricated in 0.35 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> standard CMOS technology, and consumes 4.37 mW under a 1.5 V supply.

[1]  Yong Ping Xu,et al.  A CMOS Readout Circuit for SOI Resonant Accelerometer with 4-μg bias stability and 20-μg/Hz 1/2 resolution A CMOS Readout Circuit for SOI Resonant Accelerometer with 4-μg bias stability and 20-μg/Hz 1/2 resolution , 2008 .

[2]  P. Ullah,et al.  Breakthrough in high performance inertial navigation grade Sigma-Delta MEMS accelerometer , 2012, Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium.

[3]  E. Rubiola,et al.  Phase Noise and Frequency Stability in Oscillators , 2008 .

[4]  K. Najafi,et al.  A monolithic three-axis micro-g micromachined silicon capacitive accelerometer , 2005, Journal of Microelectromechanical Systems.

[5]  Jian Zhao,et al.  A System Decomposition Model for Phase Noise in Silicon Oscillating Accelerometers , 2016, IEEE Sensors Journal.

[6]  Behzad Razavi,et al.  A study of phase noise in CMOS oscillators , 1996, IEEE J. Solid State Circuits.

[7]  Michael H. Perrott,et al.  A 12-Bit, 10-MHz Bandwidth, Continuous-Time ΣΔ ADC With a 5-Bit, 950-MS/s VCO-Based Quantizer , 2008, VLSIC 2008.

[8]  M. Kraft,et al.  High Order Bandpass Sigma Delta Interface for Vibratory Gyroscopes , 2005, IEEE Sensors, 2005..

[9]  Bernhard E. Boser,et al.  17.6 A Fourth-Order Σ∆ Interface for Micromachined Inertial Sensors , 2004 .

[10]  F. Ayazi,et al.  A 4.5-mW Closed-Loop $\Delta\Sigma$ Micro-Gravity CMOS SOI Accelerometer , 2006, IEEE Journal of Solid-State Circuits.

[11]  Liang Yin,et al.  A Closed-Loop $\Sigma\Delta$ Interface for a High-Q Micromechanical Capacitive Accelerometer With 200 ng/$ \surd$Hz Input Noise Density , 2015, IEEE Journal of Solid-State Circuits.

[12]  Kari Halonen,et al.  A High-Resolution Accelerometer With Electrostatic Damping and Improved Supply Sensitivity , 2012, IEEE Journal of Solid-State Circuits.

[13]  Calvin Plett,et al.  A study of digital and analog automatic-amplitude control circuitry for voltage-controlled oscillators , 2003, IEEE J. Solid State Circuits.

[14]  P. Rombouts,et al.  A Closed-Loop Digitally Controlled MEMS Gyroscope With Unconstrained Sigma-Delta Force-Feedback , 2009, IEEE Sensors Journal.

[15]  D. Leeson A simple model of feedback oscillator noise spectrum , 1966 .

[16]  Yan Su,et al.  27.2 A1.2μg/√Hz-resolution 0.4μg-bias-instability MEMS silicon oscillating accelerometer with CMOS readout circuit , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[17]  Jaewook Kim,et al.  Analysis and Design of Voltage-Controlled Oscillator Based Analog-to-Digital Converter , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  T. Saether,et al.  A narrow-band delta-sigma frequency-to-digital converter , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[19]  B.E. Boser,et al.  A fourth-order /spl Sigma//spl Delta/ interface for micromachined inertial sensors , 2004, IEEE Journal of Solid-State Circuits.

[20]  Alberto Corigliano,et al.  A Resonant Microaccelerometer With High Sensitivity Operating in an Oscillating Circuit , 2010, Journal of Microelectromechanical Systems.

[21]  T. Gabrielson Mechanical-thermal noise in micromachined acoustic and vibration sensors , 1993 .

[22]  E. Lasalandra,et al.  A Pierce oscillator for MEMS resonant accelerometer with a novel low-power amplitude limiting technique , 2012, 2012 IEEE International Frequency Control Symposium Proceedings.

[23]  Reza Abdolvand,et al.  A 4.5-mW Closed-Loop Micro-Gravity CMOS SOI Accelerometer , 2006 .

[24]  M.Z. Straayer,et al.  A 12-Bit, 10-MHz Bandwidth, Continuous-Time $\Sigma\Delta$ ADC With a 5-Bit, 950-MS/s VCO-Based Quantizer , 2008, IEEE Journal of Solid-State Circuits.

[25]  A. Shkel,et al.  High Quality Factor Resonant MEMS Accelerometer With Continuous Thermal Compensation , 2015, IEEE Sensors Journal.

[26]  R. Hopkins,et al.  The Silicon Oscillating Accelerometer: A High-Performance MEMS Accelerometer for Precision Navigation and Strategic Guidance Applications , 2005 .

[27]  Michael Kraft,et al.  Parameter optimization for a high-order band-pass continuous-time sigma-delta modulator MEMS gyroscope using a genetic algorithm approach , 2012 .

[28]  M. Helsel,et al.  A navigation grade micro-machined silicon accelerometer , 1994, Proceedings of 1994 IEEE Position, Location and Navigation Symposium - PLANS'94.

[29]  Mikko Saukoski,et al.  A Micropower Interface ASIC for a Capacitive 3-Axis Micro-Accelerometer , 2007, IEEE Journal of Solid-State Circuits.

[30]  Hyeon Cheol Kim,et al.  Inertial-grade out-of-plane and in-plane differential resonant silicon accelerometers (DRXLs) , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[31]  Stefan Finkbeiner,et al.  MEMS for automotive and consumer electronics , 2013, 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[32]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[33]  G. Langfelder,et al.  Mechanical and Electronic Amplitude-Limiting Techniques in a MEMS Resonant Accelerometer , 2012, IEEE Sensors Journal.

[34]  Yan Su,et al.  A Sub-µg Bias-Instability MEMS Oscillating Accelerometer With an Ultra-Low-Noise Read-Out Circuit in CMOS , 2015, IEEE Journal of Solid-State Circuits.

[35]  Kukjin Chun,et al.  A high performance mixed micromachined differential resonant accelerometer , 2002, Proceedings of IEEE Sensors.

[36]  T. A. Roessig,et al.  Surface-micromachined resonant accelerometer , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[37]  Yong Ping Xu,et al.  A CMOS Readout Circuit for SOI Resonant Accelerometer With 4-$\mu \rm g$ Bias Stability and 20-$ \mu\rm g/\sqrt{{\hbox{Hz}}}$ Resolution , 2008, IEEE Journal of Solid-State Circuits.

[38]  M. Kraft,et al.  Micromachined Vibratory Gyroscopes Controlled by a High-Order Bandpass Sigma-Delta Modulator , 2007, IEEE Sensors Journal.

[39]  Xudong Zou,et al.  A high-resolution resonant MEMS accelerometer , 2015, 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).