The homotopical dimension of random 2-complexes

In this paper we study the Linial-Meshulam model of random two-dimensional complexes. We prove that a random 2-complex is homotopically one dimensional, with probability tending to one as n tends to infitnity, assuming that the probability parameter p satisfies pn --> 0.

[1]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[2]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[3]  B. Bollobás The evolution of random graphs , 1984 .

[4]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[5]  Wolfgang Metzler,et al.  Two-dimensional homotopy and combinatorial group theory , 1993 .

[6]  Noga Alon,et al.  The Probabilistic Method, Third Edition , 2008, Wiley-Interscience series in discrete mathematics and optimization.

[7]  Matthew Kahle,et al.  The fundamental group of random 2-complexes , 2007, 0711.2704.

[8]  Nathan Linial,et al.  Homological Connectivity Of Random 2-Complexes , 2006, Comb..

[9]  D. Kozlov The threshold function for vanishing of the top homology group of random $d$-complexes , 2009, 0904.1652.

[10]  Daniel C. Cohen,et al.  Topology of random 2-complexes , 2010, 1006.4229.

[11]  Béla Bollobás,et al.  Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.