A Wildfire Model with Data Assimilation

A wildfire model is formulated based on balance equations for energy and fuel, where the fuel loss due to combustion corresponds to the fuel reaction rate. The resulting coupled partial differential equations have coefficients that can be approximated from prior measurements of wildfires. An Ensemble Kalman Filter technique is then used to assimilate temperatures measured at selected points into running wildfire simulations. The assimilation technique is able to modify the simulations to track the measurements correctly even if the simulations were started with an erroneous ignition location that is quite far away from the correct one.

[1]  O. V. Shipulina,et al.  Mathematical Model for Spread of Crown Fires in Homogeneous Forests and along Openings , 2002 .

[2]  P. Fife Dynamics of Internal Layers and Diffusive Interfaces , 1988 .

[3]  Xinfu Chen,et al.  Generation and propagation of interfaces in reaction-diffusion systems , 1992 .

[4]  Craig J. Johns,et al.  A two-stage ensemble Kalman filter for smooth data assimilation , 2008, Environmental and Ecological Statistics.

[5]  Wei Zhao,et al.  A Note on Dynamic Data Driven Wildfire Modeling , 2004, International Conference on Computational Science.

[6]  J. Norbury,et al.  Travelling combustion waves in a porous medium. Part 1—existence , 1988 .

[7]  J. Balbi,et al.  Dynamic modelling of fire spread across a fuel bed , 1999 .

[8]  Albert Simeoni,et al.  On the wind advection influence on the fire spread across a fuel bed: modelling by a semi-physical approach and testing with experiments , 2001 .

[9]  R. Weber,et al.  Modelling fire spread through fuel beds , 1991 .

[10]  R. McAlpine,et al.  The effect of fire front width on surface fire behaviour , 1999 .

[11]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[12]  Jonathan A. Sherratt On the transition from initial data to travelling waves in the Fisher-KPP equation , 1998 .

[13]  L. Ferragut,et al.  On a wildland fire model with radiation , 2002 .

[14]  Graham F. Carey,et al.  Least‐squares finite element approximation of Fisher's reaction–diffusion equation , 1995 .

[15]  R. O. Weber,et al.  Combustion waves in two dimensions and their one-dimensional approximation , 1997 .

[16]  Ambrose E. Ononye,et al.  IMPROVED FIRE TEMPERATURE ESTIMATION USING CONSTRAINED SPECTRAL UNMIXING , 2002 .

[17]  Shan Zhao,et al.  Comparison of the Discrete Singular Convolution and Three Other Numerical Schemes for Solving Fisher's Equation , 2003, SIAM J. Sci. Comput..

[18]  R. W. Thatcher,et al.  High order effects in one step reaction sheet jump conditions for premixed flames , 2003 .

[19]  V. V. Gubernov,et al.  Evans function stability of non-adiabatic combustion waves , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Jan Mandel,et al.  DYNAMIC DATA DRIVEN WILDFIRE MODELING , 2004 .

[21]  José Canosa,et al.  NUMERICAL SOLUTION OF FISHER'S EQUATION , 1974 .

[22]  J.-L Dupuy Testing Two Radiative Physical Models for Fire Spread Through Porous Forest Fuel Beds , 2000 .

[23]  Frederica Darema,et al.  Dynamic Data Driven Applications Systems: A New Paradigm for Application Simulations and Measurements , 2004, International Conference on Computational Science.

[24]  D. Frank-Kamenetskii,et al.  Diffusion and heat exchange in chemical kinetics , 1955 .

[25]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[26]  D. McLaughlin,et al.  An efficient multivariate random field generator using the fast Fourier transform , 1998 .

[27]  R. Codina Comparison of some finite element methods for solving the diffusion-convection-reaction equation , 1998 .

[28]  J. Mandel,et al.  Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods , 2007 .

[29]  Ronald E. Mickens A nonstandard finite difference scheme for a PDE modeling combustion with nonlinear advection and diffusion , 2005, Math. Comput. Simul..

[30]  M. Isabel Asensio,et al.  Total error estimates of mixed finite element methods for nonlinear reaction-diffusion equations , 2000, Neural Parallel Sci. Comput..

[31]  G. Richards,et al.  The mathematical modelling and computer simulation of wildland fire perimeter growth over a 3-dimensional surface , 1999 .

[32]  Chris Snyder,et al.  Toward a nonlinear ensemble filter for high‐dimensional systems , 2003 .

[33]  Wei Li,et al.  Demonstrating the Validity of a Wildfire DDDAS , 2006, International Conference on Computational Science.

[34]  Jan Mandel,et al.  Adaptive Coarse Space Selection in the BDDC and the FETI-DP Iterative Substructuring Methods: Optimal Face Degrees of Freedom , 2007 .

[35]  J. Roessler,et al.  Numerical solution of the 1 + 2 dimensional Fisher's equation by finite elements and the Galerkin method , 1997 .

[36]  Francisco J. Serón,et al.  The Evolution of a WILDLAND Forest FIRE FRONT , 2005, The Visual Computer.

[37]  Jonathan D. Beezley,et al.  A Dynamic Data Driven Wildland Fire Model , 2007, International Conference on Computational Science.

[38]  Janice L. Coen,et al.  A Coupled AtmosphereFire Model: Convective Feedback on Fire-Line Dynamics , 1996 .

[39]  A. Klimenko,et al.  A unified model of flames as gasdynamic discontinuities , 2003, Journal of Fluid Mechanics.

[40]  Guan Qin,et al.  Towards a Dynamic Data Driven Application System for Wildfire Simulation , 2005, International Conference on Computational Science.

[41]  V. V. Gubernov,et al.  Evans Function Stability of Combustion Waves , 2003, SIAM J. Appl. Math..

[42]  I. Kevrekidis,et al.  "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Frédéric Valentin,et al.  Towards multiscale functions : enriching finite element spaces with local but not bubble-like functions , 2005 .

[44]  E. Pastor,et al.  Mathematical models and calculation systems for the study of wildland fire behaviour , 2003 .

[45]  Giancarlo Sangalli,et al.  The residual-free bubble numerical method with quadratic elements , 2004 .

[46]  P. J. van Leeuwen,et al.  A variance-minimizing filter for large-scale applications , 2003 .

[47]  P. Baines,et al.  Physical mechanisms for the propagation of surface fires , 1990 .

[48]  Jianping Zhu,et al.  A fourth‐order compact algorithm for nonlinear reaction‐diffusion equations with Neumann boundary conditions , 2006 .

[49]  R. O. Weber,et al.  Combustion wave speed , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[50]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[51]  Joaquim Fort,et al.  Reaction-diffusion pulses: a combustion model , 2004 .

[52]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[53]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[54]  Elizabeth D. Reinhardt,et al.  Improved Calibration of a Large Fuel Burnout Model , 1997 .

[55]  Frédéric Valentin,et al.  Enriched finite element methods for unsteady reaction-diffusion problems , 2005 .

[56]  Henri Berestycki,et al.  Mathematical Investigation of the Cold Boundary Difficulty in Flame Propagation Theory , 1991 .

[57]  J. Dupuy,et al.  Fire spread through a porous forest fuel bed: a radiative and convective model including fire-induced flow effects , 1999 .

[58]  Andrew M. Stuart,et al.  Travelling combustion waves in a porous medium. Part II—Stability , 1988 .

[59]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[60]  Dominique Morvan,et al.  Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model. , 2005 .

[61]  Chung King Law,et al.  On Closure in Activation Energy Asymptotics of Premixed Flames , 1993 .

[62]  M. Larini,et al.  A multiphase formulation for fire propagation in heterogeneous combustible media , 1998 .

[63]  M. Isabel Asensio,et al.  Mixed Finite Element Methods for a Class of Nonlinear Reaction Diffusion Problems , 2002, Neural Parallel Sci. Comput..

[64]  F. H. Harlow,et al.  FIRETEC: A transport description of wildfire behavior , 1997 .

[65]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[66]  Harvinder S. Sidhu,et al.  Combustion waves for gases (Le = 1) and solids (Le→∞) , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[67]  Michal Beneš,et al.  Nonlinear Galerkin method for reaction-diffusion systems admitting invariant regions , 2001 .

[68]  Merico E. Argentati,et al.  Majorization for Changes in Angles Between Subspaces, Ritz Values, and Graph Laplacian Spectra , 2006, SIAM J. Matrix Anal. Appl..

[69]  Jan Mandel,et al.  Efficient Implementation of the Ensemble Kalman Filter Efficient Implementation of the Ensemble Kalman Filter , 2022 .

[70]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[71]  Todd Arbogast,et al.  A Nonlinear Mixed Finite Eelement Method for a Degenerate Parabolic Equation Arising in Flow in Porous Media , 1996 .

[72]  R. O. Weber Toward a Comprehensive Wildfire Spread Model , 1991 .

[73]  A. M. Grishin General mathematical model for forest fires and its applications , 1996 .

[74]  Yehia A. Khulief,et al.  A non-linear multiple-model state estimation scheme for pipeline leak detection and isolation , 2002 .

[75]  Judith Winterkamp,et al.  Studying wildfire behavior using FIRETEC , 2002 .

[76]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[77]  J. Quintiere Principles of Fire Behavior , 1997 .

[78]  Paul-Antoine Santoni,et al.  The contribution of radiant heat transfer to laboratory-scale fire spread under the influences of wind and slope , 2001 .

[79]  Alexandre Ern,et al.  Detailed Chemistry Modeling of Laminar Diffusion Flames On Parallel Computers , 1995, Int. J. High Perform. Comput. Appl..

[80]  Lynn S. Bennethum,et al.  Flow and deformation: understanding the assumptions and thermodynamics , 2004 .

[81]  Jeffrey L. Anderson,et al.  A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts , 1999 .