Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications

[1]  John Shawe-Taylor,et al.  A Result of Vapnik with Applications , 1993, Discret. Appl. Math..

[2]  Michael Kearns,et al.  Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[3]  Balas K. Natarajan,et al.  Probably Approximate Learning Over Classes of Distributions , 1992, SIAM J. Comput..

[4]  Robert H. Sloan,et al.  Corrigendum to types of noise in data for concept learning , 1988, COLT '92.

[5]  David Haussler,et al.  Calculation of the learning curve of Bayes optimal classification algorithm for learning a perceptron with noise , 1991, COLT '91.

[6]  Andrew R. Barron,et al.  Minimum complexity density estimation , 1991, IEEE Trans. Inf. Theory.

[7]  A. Dembo,et al.  On Uniform Convergence for Dependent Processes , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.

[8]  Opper,et al.  Generalization performance of Bayes optimal classification algorithm for learning a perceptron. , 1991, Physical review letters.

[9]  Wray L. Buntine,et al.  Bayesian Back-Propagation , 1991, Complex Syst..

[10]  Manfred K. Warmuth,et al.  On the Computational Complexity of Approximating Distributions by Probabilistic Automata , 1990, COLT '90.

[11]  Robert E. Schapire,et al.  Efficient distribution-free learning of probabilistic concepts , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[12]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[13]  Halbert White,et al.  Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings , 1990, Neural Networks.

[14]  Sompolinsky,et al.  Learning from examples in large neural networks. , 1990, Physical review letters.

[15]  Kenji Yamanishi,et al.  A learning criterion for stochastic rules , 1990, COLT '90.

[16]  Andrew R. Barron,et al.  Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.

[17]  D. Lindley The 1988 Wald Memorial Lectures: The Present Position in Bayesian Statistics , 1990 .

[18]  Tomaso A. Poggio,et al.  Extensions of a Theory of Networks for Approximation and Learning , 1990, NIPS.

[19]  Wray L. Buntine,et al.  A theory of learning classification rules , 1990 .

[20]  D. Pollard Empirical Processes: Theory and Applications , 1990 .

[21]  David Haussler,et al.  Decision Theoretic Generalizations of the PAC Learning Model , 1990, ALT.

[22]  David E. Rumelhart,et al.  Predicting the Future: a Connectionist Approach , 1990, Int. J. Neural Syst..

[23]  Vijaykumar Gullapalli,et al.  A stochastic reinforcement learning algorithm for learning real-valued functions , 1990, Neural Networks.

[24]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[25]  A. Barron,et al.  Statistical properties of artificial neural networks , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[26]  Halbert White,et al.  Learning in Artificial Neural Networks: A Statistical Perspective , 1989, Neural Computation.

[27]  Naftali Tishby,et al.  Consistent inference of probabilities in layered networks: predictions and generalizations , 1989, International 1989 Joint Conference on Neural Networks.

[28]  Vladimir Vapnik,et al.  Inductive principles of the search for empirical dependences (methods based on weak convergence of probability measures) , 1989, COLT '89.

[29]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[30]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[31]  Kumpati S. Narendra,et al.  Learning automata - an introduction , 1989 .

[32]  David E. Rumelhart,et al.  Product Units: A Computationally Powerful and Biologically Plausible Extension to Backpropagation Networks , 1989, Neural Computation.

[33]  B. K. Natarajan,et al.  Some results on learning , 1989 .

[34]  S. Kulkarni,et al.  On metric entropy, Vapnik-Chervonenkis dimension, and learnability for a class of distributions , 1989 .

[35]  Steven J. Nowlan,et al.  Maximum Likelihood Competitive Learning , 1989, NIPS.

[36]  David Haussler,et al.  What Size Net Gives Valid Generalization? , 1989, Neural Computation.

[37]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[38]  Alon Itai,et al.  Learnability by fixed distributions , 1988, COLT '88.

[39]  David Haussler,et al.  Predicting {0,1}-functions on randomly drawn points , 1988, COLT '88.

[40]  George Shackelford,et al.  Learning k-DNF with noise in the attributes , 1988, Annual Conference Computational Learning Theory.

[41]  David Haussler,et al.  Equivalence of models for polynomial learnability , 1988, COLT '88.

[42]  Leslie G. Valiant,et al.  A general lower bound on the number of examples needed for learning , 1988, COLT '88.

[43]  Nathan Linial,et al.  Results on learnability and the Vapnik-Chervonenkis dimension , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[44]  David Haussler,et al.  Quantifying Inductive Bias: AI Learning Algorithms and Valiant's Learning Framework , 1988, Artif. Intell..

[45]  Luc Devroye,et al.  Automatic Pattern Recognition: A Study of the Probability of Error , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[47]  Emo Welzl,et al.  Partition trees for triangle counting and other range searching problems , 1988, SCG '88.

[48]  Prasad Tadepalli,et al.  Two New Frameworks for Learning , 1988, ML.

[49]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[50]  N. Littlestone Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[51]  R. Dudley Universal Donsker Classes and Metric Entropy , 1987 .

[52]  K. Alexander,et al.  Rates of growth and sample moduli for weighted empirical processes indexed by sets , 1987 .

[53]  D. Pollard,et al.  $U$-Processes: Rates of Convergence , 1987 .

[54]  Leslie G. Valiant,et al.  On the learnability of Boolean formulae , 1987, STOC.

[55]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[56]  Lawrence D. Jackel,et al.  Large Automatic Learning, Rule Extraction, and Generalization , 1987, Complex Syst..

[57]  J. Rissanen Stochastic Complexity and Modeling , 1986 .

[58]  David Haussler,et al.  Epsilon-nets and simplex range queries , 1986, SCG '86.

[59]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[60]  P. Anandan,et al.  Pattern-recognizing stochastic learning automata , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[61]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[62]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[63]  D. Pollard Convergence of stochastic processes , 1984 .

[64]  R. Dudley A course on empirical processes , 1984 .

[65]  P. Assouad Densité et dimension , 1983 .

[66]  J. D. Farmer,et al.  Information Dimension and the Probabilistic Structure of Chaos , 1982 .

[67]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[68]  Richard M. Dudley,et al.  Some special vapnik-chervonenkis classes , 1981, Discret. Math..

[69]  R. Dudley Central Limit Theorems for Empirical Measures , 1978 .

[70]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[71]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[72]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[73]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[74]  Gerald S. Rogers,et al.  Mathematical Statistics: A Decision Theoretic Approach , 1967 .

[75]  George Finlay Simmons,et al.  Introduction to Topology and Modern Analysis , 1963 .

[76]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[77]  W. Loh,et al.  Classification and regression trees , 2022 .