Field ionization model implemented in Particle In Cell code and applied to laser-accelerated carbon ions

A novel numerical modeling of field ionization in PIC (Particle In Cell) codes is presented. Based on the quasistatic approximation of the ADK (Ammosov Delone Krainov) theory and implemented through a Monte Carlo scheme, this model allows for multiple ionization processes. Two-dimensional PIC simulations are performed to analyze the cut-off energies of the laser-accelerated carbon ions measured on the UHI 10 Saclay facility. The influence of the target and the hydrocarbon pollutant composition on laser-accelerated carbon ion energies is demonstrated.

[1]  K.-U. Amthor,et al.  Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets , 2006, Nature.

[2]  O. Klimo,et al.  Numerical and experimental studies of K-α emission from femtosecond-laser-irradiated foil targets , 2006 .

[3]  Y. Hironaka,et al.  Dependence on laser intensity and pulse duration in proton acceleration by irradiation of ultrashort laser pulses on a Cu foil target , 2005 .

[4]  Julien Fuchs,et al.  Proton spectra from ultraintense laser-plasma interaction with thin foils: Experiments, theory, and simulation , 2003 .

[5]  J. Meyer-ter-Vehn,et al.  Modeling ultrafast laser-driven ionization dynamics with Monte Carlo collisional particle-in-cell simulations , 2004 .

[6]  Patrick Audebert,et al.  Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses. , 2007, Optics letters.

[7]  F. Réau,et al.  Proton acceleration with high-intensity ultrahigh-contrast laser pulses. , 2007, Physical review letters.

[8]  E. Brambrink,et al.  Transverse characteristics of short-pulse laser-produced ion beams: a study of the acceleration dynamics. , 2006, Physical review letters.

[9]  Deanna M. Pennington,et al.  Energetic proton generation in ultra-intense laser–solid interactions , 2000 .

[10]  J. Cobble,et al.  High resolution laser-driven proton radiography , 2002 .

[11]  Bardsley,et al.  Residual energy in plasmas produced by intense subpicosecond lasers. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[12]  T. Esirkepov,et al.  Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor , 2001 .

[13]  P. Mora,et al.  Plasma expansion into a vacuum. , 2003, Physical review letters.

[14]  Eric Esarey,et al.  Particle-in-cell simulations of tunneling ionization effects in plasma-based accelerators , 2003 .

[15]  K. Witte,et al.  MeV ion jets from short-pulse-laser interaction with thin foils. , 2002, Physical review letters.

[16]  Rae,et al.  Detailed simulations of plasma-induced spectral blueshifting. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  S. V. Bulanov,et al.  Feasibility of using laser ion accelerators in proton therapy , 2002 .

[18]  Vladimir T. Tikhonchuk,et al.  Quasi-mono-energetic ion acceleration from a homogeneous composite target by an intense laser pulse , 2006 .

[19]  D. Neely,et al.  Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses , 2010 .

[20]  P. Mulser,et al.  Modeling field ionization in an energy conserving form and resulting nonstandard fluid dynamics , 1998 .

[21]  E. Lefebvre,et al.  Simulations of energetic proton emission in laser–plasma interaction , 2003 .

[22]  Thomas M. Antonsen,et al.  Numerical simulation of short laser pulse relativistic self-focusing in underdense plasma , 1998 .

[23]  T. C. Sangster,et al.  Intense high-energy proton beams from Petawatt-laser irradiation of solids. , 2000, Physical review letters.

[24]  G. L. Yudin,et al.  Nonadiabatic tunnel ionization: Looking inside a laser cycle , 2001 .

[25]  M. Geissel,et al.  The generation of high-quality, intense ion beams by ultra-intense lasers , 2002 .

[26]  T E Cowan,et al.  Isochoric heating of solid-density matter with an ultrafast proton beam. , 2003, Physical review letters.