Post‐stimulus hyperpolarization and slow potassium conductance increase in Aplysia giant neurone

1. Intracellular records from Aplysia giant (R2) cell somata showed long lasting 4–10 mV hyperpolarizations after passage of outward current through a second intracellular electrode.

[1]  S. Hagiwara,et al.  Hyperpolarization of a Barnacle Photoreceptor Membrane following Illumination , 1971, The Journal of general physiology.

[2]  K. Krnjević,et al.  Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones , 1971, The Journal of physiology.

[3]  C. Stevens,et al.  Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma , 1971, The Journal of physiology.

[4]  I. Cooke,et al.  Inhibition of Impulse Activity in a Sensory Neuron by an Electrogenic Pump , 1971, The Journal of general physiology.

[5]  R. Gruener,et al.  Voltage clamp of the Aplysia giant neurone: early sodium and calcium currents , 1970, The Journal of physiology.

[6]  J. Weakly,et al.  Post‐tetanic hyperpolarization produced by an electrogenic pump in dorsal spinocerebellar tract neurones of the cat , 1970, The Journal of physiology.

[7]  A. Brown,et al.  Increased Chloride Conductance As the Proximate Cause of Hydrogen Ion Concentration Effects in Aplysia Neurons , 1970, The Journal of general physiology.

[8]  E. Ettienne Control of Contractility in Spirostomum by Dissociated Calcium Ions , 1970, The Journal of general physiology.

[9]  R. H. Adrian,et al.  Slow changes in potassium permeability in skeletal muscle , 1970, The Journal of physiology.

[10]  J. M. Ritchie,et al.  A comparison of the effect of temperature, metabolic inhibitors and of ouabain on the electrogenic component of the sodium pump in mammalian non‐myelinated nerve fibres , 1969, The Journal of physiology.

[11]  D. Baylor,et al.  After‐effects of nerve impulses on signalling in the central nervous system of the leech , 1969, The Journal of physiology.

[12]  D. Berman,et al.  Effects of buffers on developed tension, membrane potentials, and ATP levels of atria. , 1969, The American journal of physiology.

[13]  D. Junge,et al.  Sodium and calcium components of action potentials in Aplysia giant neurone , 1968, The Journal of physiology.

[14]  A. Grinnell,et al.  Effect of External and Internal pH Changes on K and Cl Conductances in the Muscle Fiber Membrane of a Giant Barnacle , 1968, The Journal of general physiology.

[15]  B. O. Alving,et al.  A Contribution of an Electrogenic Na+ Pump to Membrane Potential in Aplysia Neurons , 1968, The Journal of general physiology.

[16]  J. M. Ritchie,et al.  On the electrogenic sodium pump in mammalian non‐myelinated nerve fibres and its activation by various external cations , 1968, The Journal of physiology.

[17]  W. Grampp,et al.  Effects of tetrodotoxin on the slowly adapting stretch receptor neurone of lobster , 1968, The Journal of physiology.

[18]  G. Austin,et al.  The Ionic Permeability Changes during Acetylcholine-Induced Responses of Aplysia Ganglion Cells , 1968, The Journal of general physiology.

[19]  Saul Winegrad,et al.  Intracellular Calcium Movements of Frog Skeletal Muscle during Recovery from Tetanus , 1968, The Journal of general physiology.

[20]  E. Kandel,et al.  MORPHOLOGICAL AND FUNCTIONAL PROPERTIES OF IDENTIFIED NEURONS IN THE ABDOMINAL GANGLION OF APLYSIA CALIFORNICA , 1967 .

[21]  S Nakajima,et al.  Post‐tetanic hyperpolarization and electrogenic Na pump in stretch receptor neurone of crayfish , 1966, The Journal of physiology.

[22]  D. Noble,et al.  The time and voltage dependence of the slow outward current in cardiac Purkinje fibres , 1966, The Journal of physiology.

[23]  J. Hubbard,et al.  The origin of the post‐tetanic hyperpolarization of mammalian motor nerve terminals , 1966, The Journal of physiology.

[24]  K. Kusano,et al.  Behavior of Delayed Current under Voltage Clamp in the Supramedullary Neurons of Puffer , 1966, The Journal of general physiology.

[25]  E. Kandel,et al.  An Anomalous form of Rectification in a Molluscan Central Neurone , 1964, Nature.

[26]  O. Holmes Effects of pH, changes in potassium concentration and metabolic inhibitors on the after-potentials of mammalian non-medullated nerve fibres. , 1962, Archives internationales de physiologie et de biochimie.

[27]  T. Narahashi,et al.  Mechanism of the after‐potential production in the giant axons of the cockroach , 1960, The Journal of physiology.

[28]  C. Connelly Recovery Processes and Metabolism of Nerve , 1959 .

[29]  J. M. Ritchie,et al.  The hyperpolarization which follows activity in mammalian non‐medullated fibres , 1957, The Journal of physiology.

[30]  A. Hodgkin,et al.  The after‐effects of impulses in the giant nerve fibres of Loligo , 1956, The Journal of physiology.

[31]  Abraham M. Shanes,et al.  POTASSIUM MOVEMENT IN RELATION TO NERVE ACTIVITY , 1951, The Journal of general physiology.

[32]  P. Lorenzo Marchiafava The effect of temperature change on membrane potential and conductance in Aplysia giant nerve cell. , 1970, Comparative biochemistry and physiology.

[33]  F. Strumwasser,et al.  Membrane and intracellular mechanism governing endogenous activity in neurons. , 1968 .

[34]  G. A. Kerkut,et al.  AN ELECTROGENIC SODIUM PUMP IN SNAIL NERVE CELLS. , 1965, Comparative biochemistry and physiology.

[35]  J. Eccles The Physiology of Synapses , 1964, Springer Berlin Heidelberg.

[36]  B. Frankenhaeuser,et al.  Potassium permeability in myelinated nerve fibres of Xenopus laevis , 1962, The Journal of physiology.