Robust low-temperature (350 °C) ferroelectric Hf0.5Zr0.5O2 fabricated using anhydrous H2O2 as the ALD oxidant

In this Letter, the robust ferroelectric properties of low-temperature (350 °C) Hf0.5Zr0.5O2 (HZO) films are investigated. We demonstrate that the lower crystallization temperature of HZO films originates from a densified film deposition with an anhydrous H2O2 oxidant in the atomic layer deposition process. As a consequence of this densification, H2O2-based HZO films showed completely crystallinity with fewer defects at a lower annealing temperature of 350 °C. This reduction in the crystallization temperature additionally suppresses the oxidation of TiN electrodes, thereby improving device reliability. The low-temperature crystallization process produces an H2O2-based HZO capacitor with a high remanent polarization ( Pr), reduced leakage current, high breakdown voltage, and better endurance. Furthermore, while an O3-based HZO capacitor requires wake-up cycling to achieve stable Pr, the H2O2-based HZO capacitor demonstrates a significantly reduced wake-up nature. Anhydrous H2O2 oxidant enables the fabrication of a more reliable ferroelectric HZO device using a low process thermal budget (350 °C).

[1]  Jacob L. Jones,et al.  Role of Oxygen Source on Buried Interfaces in Atomic-Layer-Deposited Ferroelectric Hafnia-Zirconia Thin Films. , 2022, ACS applied materials & interfaces.

[2]  Jin-Hyun Kim,et al.  Relaxation Induced by Imprint Phenomena in Low-Temperature (400 °C) Processed Hf0.5Zr0.5O2-Based Metal-Ferroelectric-Metal Capacitors , 2022, ACS Applied Electronic Materials.

[3]  Hyun Jae Kim,et al.  Low-thermal-budget (300 °C) ferroelectric TiN/Hf0.5Zr0.5O2/TiN capacitors realized using high-pressure annealing , 2021, Applied Physics Letters.

[4]  Junwoo Park,et al.  Direct growth of orthorhombic Hf0.5Zr0.5O2 thin films for hysteresis-free MoS2 negative capacitance field-effect transistors , 2021, npj 2D Materials and Applications.

[5]  Jin Jang,et al.  Solution processed high performance ferroelectric Hf0.5Zr0.5O2 thin film transistor on glass substrate , 2021 .

[6]  Jin-Hyun Kim,et al.  A Novel Combinatorial Approach to the Ferroelectric Properties in HfxZr1−xO2 Deposited by Atomic Layer Deposition , 2021, physica status solidi (RRL) – Rapid Research Letters.

[7]  T. Nagata,et al.  Correlation between ferroelectricity and ferroelectric orthorhombic phase of HfxZr1−xO2 thin films using synchrotron x-ray analysis , 2021 .

[8]  C. Nam,et al.  Ferroelectric polarization retention with scaling of Hf0.5Zr0.5O2 on silicon , 2021 .

[9]  H. S. Kim,et al.  Low‐Thermal‐Budget Fluorite‐Structure Ferroelectrics for Future Electronic Device Applications , 2021, physica status solidi (RRL) – Rapid Research Letters.

[10]  M. Eizenberg,et al.  Ferroelectricity of as-deposited HZO fabricated by plasma-enhanced atomic layer deposition at 300 °C by inserting TiO2 interlayers , 2021 .

[11]  T. Nagata,et al.  Improvement in ferroelectricity and breakdown voltage of over 20-nm-thick HfxZr1−xO2/ZrO2 bilayer by atomic layer deposition , 2020 .

[12]  Shimeng Yu,et al.  Direct comparison of ferroelectric properties in Hf0.5Zr0.5O2 between thermal and plasma-enhanced atomic layer deposition , 2020, Nanotechnology.

[13]  T. Mikolajick,et al.  Involvement of Unsaturated Switching in the Endurance Cycling of Si‐doped HfO2 Ferroelectric Thin Films , 2020, Advanced Electronic Materials.

[14]  T. Mikolajick,et al.  Physical chemistry of the TiN/Hf0.5Zr0.5O2 interface , 2020 .

[15]  Jaebeom Lee,et al.  Effect of hydrogen derived from oxygen source on low-temperature ferroelectric TiN/Hf0.5Zr0.5O2/TiN capacitors , 2019, Applied Physics Letters.

[16]  T. Nagata,et al.  Ferroelectricity of HfxZr1−xO2 thin films fabricated by 300 °C low temperature process with plasma-enhanced atomic layer deposition , 2019, Microelectronic Engineering.

[17]  S. Slesazeck,et al.  Identification of the nature of traps involved in the field cycling of Hf0.5Zr0.5O2-based ferroelectric thin films , 2019, Acta Materialia.

[18]  Y. Jung,et al.  Effects of hydrogen annealing temperature on the resistive switching characteristics of HfOx thin films , 2018, Materials Science in Semiconductor Processing.

[19]  Jaebeom Lee,et al.  Effect of film thickness on the ferroelectric and dielectric properties of low-temperature (400 °C) Hf0.5Zr0.5O2 films , 2018 .

[20]  Jaebeom Lee,et al.  Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget , 2017 .

[21]  A. Kummel,et al.  Chemically selective formation of Si-O-Al on SiGe(110) and (001) for ALD nucleation using H 2 O 2 (g) , 2016 .

[22]  Thomas Mikolajick,et al.  Structural Changes Underlying Field‐Cycling Phenomena in Ferroelectric HfO2 Thin Films , 2016 .

[23]  J. Glaum,et al.  Mechanisms of aging and fatigue in ferroelectrics , 2015 .

[24]  Thomas Mikolajick,et al.  About the deformation of ferroelectric hystereses , 2014 .

[25]  Jeong Hwan Kim,et al.  Atomic layer deposition of HfO2 thin films using H2O2 as oxidant , 2014 .

[26]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[27]  Alexander L. Shluger,et al.  The interaction of oxygen vacancies with grain boundaries in monoclinic HfO2 , 2009 .

[28]  H. Saitoh,et al.  Density Investigation by X-ray Reflectivity for Thin Films Synthesized Using Atmospheric CVD† , 2008 .

[29]  Tobias Erlbacher,et al.  Tunneling atomic-force microscopy as a highly sensitive mapping tool for the characterization of film morphology in thin high-k dielectrics , 2008 .

[30]  B. Servet,et al.  Solid phase crystallisation of HfO2 thin films , 2005 .

[31]  K. Kukli,et al.  Properties of hafnium oxide films grown by atomic layer deposition from hafnium tetraiodide and oxygen , 2002 .

[32]  J. H. Carey,et al.  AN INTRODUCTION TO ADVANCED OXIDATION PROCESSES (AOP) FOR DESTRUCTION OF ORGANICS IN WASTEWATER , 1992 .