The solvates of sulfamerazine: structural, thermochemical, and desolvation studies

The ability of an antibacterial agent, sulfamerazine (SMZ), to form solvates is investigated. Six solvates, with the solvents 1,4-dioxane (1:1 and 1:0.5), dimethylacetamide, dimethylformamide, cyclopentanone and 3-picoline, were identified and characterized by various analytical techniques, namely, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction. Crystal structure analysis revealed a dimer via a pair of intermolecular N–H⋯N hydrogen bonds between two molecules of SMZ and extended hydrogen bonded networks mediated by the solvent molecules. The conformationally flexible SMZ molecule adopts different conformations in the crystal structures. Thermal analysis established the stability and confirmed molar ratios of the reported solvates. Crystal structures of the sulfonamide drugs were retrieved from the Cambridge Structural Database (CSD) and analyzed to rationalize the factors that favour the solvate formation in sulfonamide drugs. It was found that the CSD statistics under-represent the true prevalence of solvates and polymorphs of sulfonamide drugs, and solvents that contain hydrogen bond acceptor groups have higher likelihood of forming solvates with sulfonamide drugs. Furthermore, a one-dimensional hydrogen bond chain motif was predominantly observed in the crystal structures of solvates/hydrates.

[1]  S. Rohani,et al.  A 2:1 sulfamethazine-theophylline cocrystal exhibiting two tautomers of sulfamethazine. , 2011, Acta crystallographica. Section C, Crystal structure communications.

[2]  P. Bag,et al.  Co-Crystals of Sulfamethazine with Some Carboxylic Acids and Amides: Co-Former Assisted Tautomerism in an Active Pharmaceutical Ingredient and Hydrogen Bond Competition Study , 2011 .

[3]  Alfred Y Lee,et al.  Crystal polymorphism in chemical process development. , 2011, Annual review of chemical and biomolecular engineering.

[4]  A. Nangia,et al.  Sulfonamide−Pyridine-N-oxide Cocrystals , 2011 .

[5]  M. Peterson,et al.  Celecoxib sodium salt: engineering crystal forms for performance , 2011 .

[6]  S. Rohani,et al.  Synthesis and preliminary characterization of sulfamethazine-theophylline co-crystal. , 2010, Journal of pharmaceutical sciences.

[7]  R. Tan,et al.  Polymorphs and Solvates of a Cocrystal Involving an Analgesic Drug, Ethenzamide, and 3,5-Dinitrobenzoic Acid , 2010 .

[8]  R. Tessadri,et al.  Stability of Solvates and Packing Systematics of Nine Crystal Forms of the Antipsychotic Drug Aripiprazole , 2009 .

[9]  J. Iqbal,et al.  Crystal Structures of Norfloxacin Hydrates , 2008 .

[10]  Ammar Khawam,et al.  Desolvation kinetics of sulfameter solvates. , 2008, Journal of pharmaceutical sciences.

[11]  M. Caira Sulfa drugs as model cocrystal formers. , 2007, Molecular pharmaceutics.

[12]  G. M. G. Hossain A new polymorph of sulfamerazine , 2006 .

[13]  A. Bansal,et al.  Characterization of solid-state forms of celecoxib. , 2003, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[14]  Anthony L. Spek,et al.  Journal of , 1993 .

[15]  David J W Grant,et al.  Crystallization and transitions of sulfamerazine polymorphs. , 2002, Journal of pharmaceutical sciences.

[16]  D. Grant,et al.  Hydrogen bonding in sulfonamides. , 2001, Journal of pharmaceutical sciences.

[17]  G. Desiraju,et al.  Polymorphism and Pseudopolymorphism in Organic Crystals. A Cambridge Structural Database Study , 2000 .

[18]  M. Caira,et al.  X-ray structural studies and physicochemical characterization of the 1-butanol, 1-pentanol, and 1,4-dioxane solvates of succinylsulfathiazole. , 1994, Journal of pharmaceutical sciences.

[19]  M. Caira,et al.  Stabilizing role of included solvent in ternary complexation: synthesis, structures and thermal analyses of three 18-crown-6/sulfonamide/acetonitrile inclusion compounds , 1993 .

[20]  M. Caria,et al.  Positive indentification of two orthorhombic polymorphs of sulfamerazine (C11H12N4O2S), their thermal analyses and structural comparison , 1992 .

[21]  B. Sheldrick,et al.  Structure and conformation of the 1:1 molecular complex sulfaproxyline–caffeine , 1991 .

[22]  J. Bernstein,et al.  Conformational polymorphism VI: the crystal and molecular structures of form II, form III, and form V of 4-amino-N-2-pyridinylbenzenesulfonamide (sulfapyridine). , 1985, Journal of pharmaceutical sciences.

[23]  M. Audran,et al.  Structure of N1-(4,6-dimethyl-2-pyrimidinyl)sulfanilamide methanol solvate, C12H14N4O2S.CH3OH , 1985 .

[24]  G. Kartha,et al.  Crystal structure of sulfamerazine , 1982 .

[25]  M. Kuhnert-Brandstätter,et al.  Polymorphie und Mischkristallbildung bei Sulfonamiden und verwandten Verbindungen , 1969 .

[26]  D. Earle RENAL EXCRETION OF SULFAMERAZINE. , 1944, The Journal of clinical investigation.

[27]  H. F. Flippin,et al.  STUDIES ON 2‐SULFANILAMIDO‐4‐METHYL‐PYRIMIDINE (SULFAMERAZINE, SULFAMETHYLDIAZINE) IN MAN H. Toxic MANIFESTATIONS , 1943 .

[28]  H. F. Flippin,et al.  STUDIES ON 2-SULFANILAMIDO-4-METHYL-PYRIMIDINE (SULFAMERIZINE, SULFAMETHYLDIAZINE) IN MAN: I. Absorption, Distribution, and Excretion , 1943 .

[29]  Michael B. Hursthouse,et al.  Over one hundred solvates of sulfathiazole , 2001 .

[30]  R. S. Payne,et al.  Crystal chemistry and solvent effects in polymorphic systems Sulfathiazole , 1998 .

[31]  M. Caira,et al.  Selective formation of hydrogen bonded cocrystals between a sulfonamide and aromatic carboxylic acids in the solid state , 1995 .

[32]  S. Byrn Solid state chemistry of drugs , 1982 .

[33]  J. Guillory,et al.  Polymorphism in sulfonamides. , 1972, Journal of pharmaceutical sciences.

[34]  G. Forbes,et al.  The use of sulfamerazine in infants and children. , 1946, The Journal of pediatrics.