Cluster galaxy dynamics and the effects of large-scale environment

Advances in observational capabilities have ushered in a new era of multi-wavelength, multi-physics probes of galaxy clusters and ambitious surveys are compiling large samples of cluster candidates selected in different ways. We use a high-resolution N-body simulation to study how the influence of large-scale structure in and around clusters causes correlated signals in different physical probes and discuss some implications this has for multi-physics probes of clusters (e.g. richness, lensing, Compton distortion and velocity dispersion). We pay particular attention to velocity dispersions, matching galaxies to subhaloes which are explicitly tracked in the simulation. We find that not only do haloes persist as subhaloes when they fall into a larger host, but groups of subhaloes retain their identity for long periods within larger host haloes. The highly anisotropic nature of infall into massive clusters, and their triaxiality, translates into an anisotropic velocity ellipsoid: line-of-sight galaxy velocity dispersions for any individual halo show large variance depending on viewing angle. The orientation of the velocity ellipsoid is correlated with the large-scale structure, and thus velocity outliers correlate with outliers caused by projection in other probes. We quantify this orientation uncertainty and give illustrative examples. Such a large variance suggests that velocity dispersion estimators will work better in an ensemble sense than for any individual cluster, which may inform strategies for obtaining redshifts of cluster members. We similarly find that the ability of substructure indicators to find kinematic substructures is highly viewing angle dependent. While groups of subhaloes which merge with a larger host halo can retain their identity for many Gyr, they are only sporadically picked up by substructure indicators. We discuss the effects of correlated scatter on scaling relations estimated through stacking, both analytically and in the simulations, showing that the strong correlation of measures with mass and the large scatter in mass at fixed observable mitigate line-of-sight projections.

[1]  M. Meneghetti,et al.  Strong lensing in the MARENOSTRUM UNIVERSE - I. Biases in the cluster lens population , 2010, 1003.4544.

[2]  P. A. R. Ade,et al.  GALAXY CLUSTERS SELECTED WITH THE SUNYAEV–ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS , 2010, 1003.0005.

[3]  A. Wetzel On the orbits of infalling satellite haloes , 2010, 1001.4792.

[4]  J. Gunn,et al.  THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION , 2009, 0911.3151.

[5]  Y. Jing,et al.  Influence of baryonic physics on the merger timescale of galaxies in N-body/hydrodynamical simulations , 2009, 0902.3734.

[6]  G. Kauffmann,et al.  Cluster galaxies die hard , 2009, 0912.2741.

[7]  A. Faltenbacher The impact of environment on the dynamical structure of satellite systems , 2009, 0912.0013.

[8]  A. Cimatti,et al.  GMASS ultradeep spectroscopy of galaxies at z ~ 2 - V. Witnessing the assembly at z = 1.6 of a galaxy cluster , 2009, 0906.4489.

[9]  D. Nagai,et al.  EFFECTS OF BARYON DISSIPATION ON THE DARK MATTER VIRIAL SCALING RELATION , 2009, 0908.2133.

[10]  W. Harris,et al.  STATISTICAL TOOLS FOR CLASSIFYING GALAXY GROUP DYNAMICS , 2009, 0908.0938.

[11]  Martin White,et al.  What determines satellite galaxy disruption , 2009, 0907.0702.

[12]  G. Mamon,et al.  The mass and anisotropy profiles of galaxy clusters from the projected phase-space density: testing the method on simulated data , 2009, 0906.5071.

[13]  R. Somerville,et al.  Can Gas prevent the Destruction of Thin Stellar Discs by Minor Mergers , 2009, 0906.0764.

[14]  J. Gunn,et al.  THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. II. THE CHALLENGE OF COMPARING GALAXY EVOLUTION MODELS TO OBSERVATIONS , 2009, 0904.0002.

[15]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[16]  Volker Springel,et al.  Resolving cosmic structure formation with the Millennium-II simulation , 2009, 0903.3041.

[17]  B. Gaudi,et al.  Galaxy Orientation and Alignment Effects in the SDSS DR6 , 2009, 0903.2264.

[18]  J. Tinker,et al.  COLLAPSE BARRIERS AND HALO ABUNDANCE: TESTING THE EXCURSION SET ANSATZ , 2008, 0812.3148.

[19]  W. Couch,et al.  SUBSTRUCTURE IN THE COLD FRONT CLUSTER ABELL 3667 , 2008, 0811.3031.

[20]  M. White,et al.  Simulating subhaloes at high redshift: merger rates, counts and types , 2008, 0810.2537.

[21]  P. A. R. Ade,et al.  GALAXY CLUSTERS DISCOVERED WITH A SUNYAEV–ZEL'DOVICH EFFECT SURVEY , 2008, 0810.1578.

[22]  R. Davé,et al.  The growth of central and satellite galaxies in cosmological smoothed particle hydrodynamics simulations , 2008, 0809.2999.

[23]  M. White,et al.  Issues in joint SZ and optical cluster finding , 2008, 0809.0308.

[24]  S. White,et al.  Alignment between galaxies and large-scale structure , 2008, 0811.1995.

[25]  C. Baugh,et al.  The fate of substructures in cold dark matter haloes , 2008, 0810.2177.

[26]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[27]  R. Skibba,et al.  A halo model of galaxy colours and clustering in the Sloan Digital Sky Survey , 2008, 0805.0310.

[28]  E. Rykoff,et al.  The LX—M relation of clusters of galaxies , 2008, 0802.1069.

[29]  Luc Simard,et al.  Spectroscopy of clusters in the ESO distant cluster survey (EDisCS). II. - Redshifts, velocity dispersions, and substructure for clusters in the last 15 fields , 2008, 0802.0149.

[30]  Michael S. Warren,et al.  The cosmic code comparison project , 2007, 0706.1270.

[31]  J. Ostriker,et al.  Thermal Balance in the Intracluster Medium: Is AGN Feedback Necessary? , 2007, 0712.0824.

[32]  H. Mo,et al.  Galaxy Groups in the SDSS DR4. II. Halo Occupation Statistics , 2007, 0710.5096.

[33]  G. Holder,et al.  The Impact of Halo Properties, Energy Feedback, and Projection Effects on the Mass-SZ Flux Relation , 2007, 0710.4555.

[34]  R. Nichol,et al.  The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for maxBCG Galaxy Clusters , 2007, 0704.3614.

[35]  Los Alamos National Laboratory,et al.  The Santa Fe Light Cone Simulation Project. I. Confusion and the Warm-Hot Intergalactic Medium in Upcoming Sunyaev-Zel’dovich Effect Surveys , 2007, 0704.2607.

[36]  A. Babul,et al.  The Sunyaev–Zeldovich background , 2007, astro-ph/0702727.

[37]  L. Moscardini,et al.  Virial Scaling of Massive Dark Matter Halos: Why Clusters Prefer a High Normalization Cosmology , 2007, astro-ph/0702241.

[38]  E. Rozo,et al.  MaxBCG: A Red-Sequence Galaxy Cluster Finder , 2007, astro-ph/0701268.

[39]  F. Prada,et al.  Interloper treatment in dynamical modelling of galaxy clusters , 2006, astro-ph/0606579.

[40]  M. White,et al.  Red-sequence cluster finding in the Millennium Simulation , 2006, 0706.0211.

[41]  S. Borgani,et al.  On the efficiency and reliability of cluster mass estimates based on member galaxies , 2006, astro-ph/0605151.

[42]  P. Madau,et al.  Early Supersymmetric Cold Dark Matter Substructure , 2006, astro-ph/0603250.

[43]  J. Diemand,et al.  Velocity distributions in clusters of galaxies , 2006, astro-ph/0602197.

[44]  Caltech,et al.  First Results on Shear-selected Clusters from the Deep Lens Survey: Optical Imaging, Spectroscopy, and X-Ray Follow-up , 2005, astro-ph/0507606.

[45]  F. Prada,et al.  Mass distribution in nearby Abell clusters , 2005, astro-ph/0511723.

[46]  A. Biviano,et al.  The build-up of the Coma cluster by infalling substructures , 2005, astro-ph/0507542.

[47]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[48]  T. Goto Velocity dispersion of 335 galaxy clusters selected from the Sloan Digital Sky Survey: statistical evidence for dynamical interaction and against ram-pressure stripping , 2005, astro-ph/0503089.

[49]  M. White,et al.  Using weak lensing to find halo masses , 2004, astro-ph/0412497.

[50]  Michael D. Gladders,et al.  The Red-Sequence Cluster Survey. I. The Survey and Cluster Catalogs for Patches RCS 0926+37 and RCS 1327+29 , 2004, astro-ph/0411075.

[51]  A. Evrard,et al.  Shapes and Alignments of Galaxy Cluster Halos , 2004, astro-ph/0408056.

[52]  Luc Simard,et al.  Spectroscopy of clusters in the ESO Distant Cluster Survey (EDisCS). Redshifts, velocity dispersions , 2004, astro-ph/0408071.

[53]  Daisuke Nagai,et al.  The Effect of Gas Cooling on the Shapes of Dark Matter Halos , 2004, astro-ph/0405189.

[54]  S. White,et al.  Galaxies and subhaloes in ΛCDM galaxy clusters , 2004, astro-ph/0405010.

[55]  R. Gal,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE COMPLEX STRUCTURE OF THE CL 1604 SUPERCLUSTER AT Z ∼ 0.9 , 2009 .

[56]  J. Mohr,et al.  K-Band Properties of Galaxy Clusters and Groups: Luminosity Function, Radial Distribution, and Halo Occupation Number , 2004, astro-ph/0402308.

[57]  A. Réfrégier Weak Gravitational Lensing by Large-Scale Structure , 2003, astro-ph/0307212.

[58]  J. Brinkmann,et al.  Observing the Dark Matter Density Profile of Isolated Galaxies , 2003, astro-ph/0301360.

[59]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[60]  M. White The Mass Function , 2002, astro-ph/0207185.

[61]  M. White,et al.  Simulating the Sunyaev-Zeldovich Effect(s): Including Radiative Cooling and Energy Injection by Galactic Winds , 2002, astro-ph/0205437.

[62]  H. Hoekstra,et al.  Current status of weak gravitational lensing , 2002, astro-ph/0205205.

[63]  Y. Jing,et al.  Triaxial Modeling of Halo Density Profiles with High-Resolution N-Body Simulations , 2002, astro-ph/0202064.

[64]  H. Hoekstra Astronomy and Astrophysics the Effect of Distant Large Scale Structure on Weak Lensing Mass Estimates , 2022 .

[65]  L. Guzzo,et al.  The ROSAT-ESO flux limited X-ray (REFLEX) galaxy cluster survey. I. The construction of the cluster sample ? , 2000, astro-ph/0012266.

[66]  M. White The Mass of a halo , 2000, astro-ph/0011495.

[67]  M. White,et al.  The Effect of the Cosmic Web on Cluster Weak Lensing Mass Estimates , 2000, astro-ph/0005442.

[68]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[69]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[70]  M. Gladders,et al.  A New Method For Galaxy Cluster Detection. I. The Algorithm , 2000, astro-ph/0004092.

[71]  R. Giacconi,et al.  The Northern ROSAT All-Sky (NORAS) Galaxy Cluster Survey. I. X-Ray Properties of Clusters Detected as Extended X-Ray Sources , 2000, astro-ph/0003219.

[72]  R. Carlberg,et al.  The Velocity and Mass Distribution of Clusters of Galaxies from the CNOC1 Cluster Redshift Survey , 1999, astro-ph/9910494.

[73]  S. Bhavsar,et al.  A Catalog of Nearby Poor Clusters of Galaxies , 1999, astro-ph/9907283.

[74]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe — III. Mock redshift surveys , 1998, astro-ph/9812009.

[75]  C. Frenk,et al.  Projection effects in cluster catalogues , 1997, astro-ph/9701103.

[76]  M. Geller,et al.  Infall Regions of Galaxy Clusters , 1997, astro-ph/9701034.

[77]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[78]  G. Tormen The rise and fall of satellites in galaxy clusters , 1996, astro-ph/9611078.

[79]  A. Evrard,et al.  Substructure in clusters as a cosmological test , 1996 .

[80]  R. Cen Toward Understanding Galaxy Clusters and Their Constituents: Projection Effects on Velocity Dispersion, X-Ray Emission, Mass Estimates, Gas Fraction, and Substructure , 1996, astro-ph/9608070.

[81]  D. Fadda,et al.  The Observational Distribution of Internal Velocity Dispersions in Nearby Galaxy Clusters , 1996, astro-ph/9606098.

[82]  J. Pinkney,et al.  Evaluation of Statistical Tests for Substructure in Clusters of Galaxies , 1996 .

[83]  R. Hartog,et al.  ON THE DYNAMICS OF THE CORES OF GALAXY CLUSTERS , 1996 .

[84]  Andrea Biviano,et al.  Velocity dispersions in galaxy clusters , 1993 .

[85]  Michael S. Warren,et al.  Dark halos formed via dissipationless collapse. I: Shapes and alignment of angular momentum , 1992 .

[86]  R. Nichol,et al.  The Edinburgh-Durham Southern Galaxy Catalogue. IV : The cluster catalogue , 1992 .

[87]  H. M. P. Couchman,et al.  Simulating the formation of a cluster of galaxies , 1992 .

[88]  S. Maddox,et al.  Spatial correlations in a redshift survey of APM galaxy clusters , 1992 .

[89]  T. Beers,et al.  Measures of location and scale for velocities in clusters of galaxies. A robust approach , 1990 .

[90]  John P. Huchra,et al.  The kinematics of Abell clusters , 1989 .

[91]  S. Shectman,et al.  Evidence for substructure in rich clusters of galaxies from radial-velocity measurements , 1988 .

[92]  Nick Kaiser,et al.  Evolution and clustering of rich clusters , 1986 .

[93]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[94]  I. McHardy X-ray sources in clusters of galaxies , 1978 .

[95]  A. Yahil,et al.  The Velocity Distribution of Galaxies in Clusters , 1977 .

[96]  D. Schwartz The X-ray luminosity function of Abell clusters. , 1976 .

[97]  G. Abell The Distribution of rich clusters of galaxies , 1958 .

[98]  Henry G. Gale Albert a. Michelson , 1931 .