State-of-the-art in aerodynamic shape optimisation methods

Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners.

[1]  P. Gage,et al.  Variable-complexity genetic algorithm for topological design , 1995 .

[2]  Pierre Sagaut,et al.  Comparison of Gradient-Based and Gradient-Enhanced Response-Surface-Based Optimizers , 2010 .

[3]  Bogdan Artyushenko Analysis of global exploration of island model genetic algorithm , 2009, 2009 10th International Conference - The Experience of Designing and Application of CAD Systems in Microelectronics.

[4]  Shigeru Obayashi,et al.  Evolutionary algorithm with parallel evaluation strategy of feasible and infeasible solutions considering total constraint violation , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[5]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[6]  Joaquim R. R. A. Martins,et al.  Aerodynamic Design Optimization Studies of a Blended-Wing-Body Aircraft , 2014 .

[7]  Raphael T. Haftka,et al.  Integrated aerodynamic/structural design of a sailplane wing , 1986 .

[8]  Li Liu,et al.  Helicopter vibration reduction throughout the entire flight envelope using surrogate-based optimization , 2007 .

[9]  Stephan Lehner,et al.  Hybrid Optimization for a Combinatorial Aircraft Design Problem , 2009 .

[10]  Robert L. Smith,et al.  Simulated annealing for constrained global optimization , 1994, J. Glob. Optim..

[11]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[12]  A. Oyama,et al.  Real-Coded Adaptive Range Genetic Algorithm and Its Application to Aerodynamic Design , 2000 .

[13]  Luis Felipe Gonzalez,et al.  Fast reconstruction of aerodynamic shapes using evolutionary algorithms and virtual nash strategies in a CFD design environment , 2008, J. Comput. Appl. Math..

[14]  J. Alonso,et al.  ADjoint: An Approach for the Rapid Development of Discrete Adjoint Solvers , 2006 .

[15]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[16]  Yu Zhang,et al.  Multi-round Surrogate-based Optimization for Benchmark Aerodynamic Design Problems , 2016 .

[17]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[18]  A. Keane,et al.  Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling , 2003 .

[19]  Daniel J Poole,et al.  Simulation and surrogate-based design of rectangular vortex generators for tiltrotor aircraft wings , 2015 .

[20]  K.C.S. Murty,et al.  Retaining diversity of search point distribution through a breeder genetic algorithm for neural network learning , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[21]  A. Galindo,et al.  Application of the simplex simulated annealing technique to nonlinear parameter optimization for the SAFT-VR equation of state , 2005 .

[22]  Joaquim R. R. A. Martins,et al.  Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration , 2014 .

[23]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization of the CRM Configuration Including Buffet-Onset Conditions , 2016 .

[24]  Mitsuo Gen,et al.  Genetic Algorithms & Engineering Optimization , 2000 .

[25]  Li Tiancheng,et al.  アルゴリズム906: elrint3d―組み込み格子ルールのシーケンスを用いる三次元非適応自動立体求積法ルーチン , 2011 .

[26]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[27]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[28]  Andrew S. Thelen,et al.  Application of Multifidelity Optimization Techniques to Benchmark Aerodynamic Design Problems , 2016 .

[29]  Kamran Behdinan,et al.  Particle Swarm Optimization in Structural Design , 2007 .

[30]  Afzal Suleman,et al.  Numerical Evaluation of Optimization Algorithms for Low-Reynolds-Number Aerodynamic Shape Optimization , 2005 .

[31]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[32]  Shigeru Obayashi,et al.  Aerodynamic Optimization of Near-future High-wing Aircraft , 2015 .

[33]  Kazuhiro Nakahashi,et al.  Multidisciplinary Design Optimization and Data Mining for Transonic Regional-Jet Wing , 2007 .

[34]  Joaquim R. R. A. Martins,et al.  A CAD-Free Approach to High-Fidelity Aerostructural Optimization , 2010 .

[35]  Ephrahim Garcia,et al.  Engineering Notes Bat-Inspired Wing Aerodynamics and Optimization , 2010 .

[36]  Theresa Dawn Robinson,et al.  Surrogate-Based Optimization Using Multifidelity Models with Variable Parameterization and Corrected Space Mapping , 2008 .

[37]  Michel van Tooren,et al.  Coupled adjoint aerostructural wing optimization using quasi-three-dimensional aerodynamic analysis , 2016 .

[38]  Yaokun Wang,et al.  Optimization of Suction Control on an Airfoil Using Multi-island Genetic Algorithm☆ , 2015 .

[39]  Petra Himmel Soft Computing For Hybrid Intelligent Systems , 2016 .

[40]  Yuan-yuan Wang,et al.  Robust airfoil optimization based on improved particle swarm optimization method , 2011 .

[41]  J. Periaux,et al.  Parallel evolutionary algorithms for optimization problems in aerospace engineering , 2002 .

[42]  O. Weck,et al.  A COMPARISON OF PARTICLE SWARM OPTIMIZATION AND THE GENETIC ALGORITHM , 2005 .

[43]  Michael J. Aftosmis,et al.  Adaptive Shape Parameterization for Aerodynamic Design , 2015 .

[44]  Cody A. Paige,et al.  Automatic Differentiation Adjoint of the Reynolds-Averaged Navier-Stokes Equations with a Turbulence Model , 2013 .

[45]  Riccardo Poli,et al.  A Field Guide to Genetic Programming , 2008 .

[46]  Joaquim R. R. A. Martins,et al.  Aeroservoelastic Design Optimization of a Flexible Wing , 2012 .

[47]  Ajith Abraham,et al.  Particle Swarm Optimization: Performance Tuning and Empirical Analysis , 2009, Foundations of Computational Intelligence.

[48]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark , 2015 .

[49]  A.H.W Bos,et al.  Aircraft conceptual design by genetic/gradient-guided optimization , 1998 .

[50]  Wei Shyy,et al.  Response surface techniques for diffuser shape optimization , 1997 .

[51]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[52]  Daisuke Sasaki,et al.  Efficient Search for Trade-Offs by Adaptive Range Multi-Objective Genetic Algorithms , 2005, J. Aerosp. Comput. Inf. Commun..

[53]  Alfaro Cid,et al.  Optimisation of time domain controllers for supply ships using genetic algorithms and genetic programming , 2003 .

[54]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[55]  Ernesto Benini,et al.  A surrogate-assisted evolutionary algorithm based on the genetic diversity objective , 2015, Appl. Soft Comput..

[56]  P. Fourie,et al.  The particle swarm optimization algorithm in size and shape optimization , 2002 .

[57]  Noud Werter,et al.  Aeroelastic tailoring and structural optimisation using an advanced dynamic aeroelastic framework , 2015 .

[58]  J. E. Green,et al.  Civil aviation and the environment – the next frontier for the aerodynamicist , 2006, The Aeronautical Journal (1968).

[59]  S. N. Sivanandam,et al.  Introduction to genetic algorithms , 2007 .

[60]  John T. Hwang,et al.  Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models , 2013 .

[61]  John C. Vassberg,et al.  Summary of Data from the First AIAA CFD Drag Prediction Workshop , 2002 .

[62]  Marco Tomassini,et al.  Evolutionary Algorithms , 1995, Towards Evolvable Hardware.

[63]  Qiqi Wang,et al.  Adjoint Based Structure and Shape Optimization with Flutter Constraints , 2016 .

[64]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[65]  Charles E. Taylor Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Complex Adaptive Systems.John H. Holland , 1994 .

[66]  Kazuhiro Nakahashi,et al.  High-Fidelity Multidisciplinary Design Optimization of Aerostructural Wing Shape for Regional Jet , 2005 .

[67]  Joaquim R. R. A. Martins,et al.  Aerostructural Shape Optimization of Wind Turbine Blades Considering Site-Specic Winds , 2008 .

[68]  K. Willcox,et al.  Constrained multifidelity optimization using model calibration , 2012, Structural and Multidisciplinary Optimization.

[69]  C. Fernandes,et al.  A study on non-random mating and varying population size in genetic algorithms using a royal road function , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[70]  D. Zingg,et al.  Multimodality and Global Optimization in Aerodynamic Design , 2013 .

[71]  Kenji Takeda,et al.  Multifidelity surrogate modeling of experimental and computational aerodynamic data sets , 2011 .

[72]  Kevin Tucker,et al.  Response surface approximation of pareto optimal front in multi-objective optimization , 2004 .

[73]  Joaquim R. R. A. Martins,et al.  Performance Evaluation of a Morphing Trailing Edge Using Multipoint Aerostructural Design Optimization , 2016 .

[74]  Yanbin Liu,et al.  Research on Multidisciplinary Analysis Tool based on Parametric Model of Hypersonic Morphing Waverider , 2015 .

[75]  Ponnuthurai N. Suganthan,et al.  Evaluation of genetic operators and solution representations for shape recognition by genetic algorithms , 2002, Pattern Recognit. Lett..

[76]  M. Damodaran,et al.  Comparison of Deterministic and Stochastic Optimization Algorithms for Generic Wing Design Problems , 2000 .

[77]  Ajith Abraham,et al.  SEARCH OPTIMIZATION USING HYBRID PARTICLE SUB- SWARMS AND EVOLUTIONARY ALGORITHMS , 2005 .

[78]  Zhang Jinhuan,et al.  An improved genetic algorithm and its applications to the optimisation design of an aspirated compressor profile , 2015 .

[79]  Joaquim R. R. A. Martins,et al.  An asymmetric suboptimization approach to aerostructural optimization , 2009 .

[80]  Masoud Rais-Rohani,et al.  Integrated aerodynamic-structural design of a transport wing , 1989 .

[81]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[82]  Michael J. Aftosmis,et al.  Aerodynamic Shape Optimization Benchmarks with Error Control and Automatic Parameterization , 2015 .

[83]  J. Alonso,et al.  Using gradients to construct cokriging approximation models for high-dimensional design optimization problems , 2002 .

[84]  Olympia Roeva,et al.  Influence of the population size on the genetic algorithm performance in case of cultivation process modelling , 2013, 2013 Federated Conference on Computer Science and Information Systems.

[85]  G. Guglieri Using of Particle Swarm for Performance Optimization of Helicopter Rotor Blades , 2012 .

[86]  Joaquim R. R. A. Martins,et al.  Aerostructural Design Optimization of an Adaptive Morphing Trailing Edge Wing , 2015 .

[87]  Roy J. Hartfield,et al.  Aerospace Design: A Comparative Study of Optimizers , 2010 .

[88]  Jingjun Zhang,et al.  Multi-island Genetic Algorithm Opetimization of Suspension System , 2012 .

[89]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[90]  Meng-Sing Liou,et al.  Transonic Axial-Flow Blade Optimization: Evolutionary Algorithms/Three-Dimensional Navier-Stokes Solver , 2004 .

[91]  Ernesto Benini,et al.  Genetic Diversity as an Objective in Multi-Objective Evolutionary Algorithms , 2003, Evolutionary Computation.

[92]  Hassan Ugail,et al.  Parametric design of aircraft geometry using partial differential equations , 2009, Adv. Eng. Softw..

[93]  Thomas H. Pulliam,et al.  AIAA 2002 – 5548 Multi-Point and Multi-Objective Aerodynamic Shape Optimization , 2002 .

[94]  Xue-yi You,et al.  Determination of the optimal control parameter range of air supply in an aircraft cabin , 2015 .

[95]  C. Mader,et al.  Stability-Constrained Aerodynamic Shape Optimization of Flying Wings , 2013 .

[96]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[97]  M. Damodaran,et al.  Aerodynamic Shape Optimization Using Computational Fluid Dynamics and Parallel Simulated Annealing Algorithms , 2001 .

[98]  Meng-Sing Liou,et al.  Multiobjective Optimization Using Coupled Response Surface Model and Evolutionary Algorithm. , 2005 .

[99]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[100]  Agus Sudjianto,et al.  Blind Kriging: A New Method for Developing Metamodels , 2008 .

[101]  Madara Ogot,et al.  Stochastic approach to optimal aerodynamic shape design , 1996 .

[102]  Aurora Trinidad Ramirez Pozo,et al.  Evaluation of asynchronous multi‐swarm particle optimization on several topologies , 2013, Concurr. Comput. Pract. Exp..

[103]  Jason E. Hicken,et al.  Induced-Drag Minimization of Nonplanar Geometries Based on the Euler Equations , 2010 .

[104]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[105]  Timothy R. Brooks,et al.  High-fidelity Aerostructural Optimization of a High Aspect Ratio Tow-steered Wing , 2016 .

[106]  Edward N. Tinoco,et al.  Summary of Data from the Sixth AIAA CFD Drag Prediction Workshop: Case 1 Code Verification. , 2017, Journal of aircraft.

[107]  Godfrey A. Walters,et al.  EVOLUTIONARY DESIGN ALGORITHM FOR OPTIMAL LAYOUT OF TREE NETWORKS , 1995 .

[108]  Ka Fai Cedric Yiu,et al.  Application of simulated annealing to inverse design of transonic turbomachinery cascades , 2002 .

[109]  O. Pironneau On optimum design in fluid mechanics , 1974 .

[110]  Slawomir Koziel,et al.  Rapid Multi-Objective Aerodynamic Design Using Co-Kriging and Space Mapping , 2016 .

[111]  R. Dwight,et al.  Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches , 2010 .

[112]  Simon James Miller,et al.  Adaptive wing structures for aeroelastic drag reduction and loads alleviation , 2011 .

[113]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[114]  Carl Ollivier-Gooch,et al.  High Order Aerodynamic Optimization Using New Hybrid Sequential Quadratic Programing-Particle Swarm Intelligence Technique , 2012 .

[115]  Régis Duvigneau,et al.  Low cost PSO using metamodels and inexact pre-evaluation: Application to aerodynamic shape design , 2009 .

[116]  Manas Khurana,et al.  Airfoil Optimisation by Swarm Algorithm with Mutation and Artificial Neural Networks , 2009 .

[117]  Jaroslaw Sobieszczanski-Sobieski,et al.  Optimization by decomposition: A step from hierarchic to non-hierarchic systems , 1989 .

[118]  G. R. Shubin,et al.  A comparison of optimization-based approaches for a model computational aerodynamics design problem , 1992 .

[119]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[120]  Andy J. Keane,et al.  Efficient Multipoint Aerodynamic Design Optimization Via Cokriging , 2011 .

[121]  Amir Nejat,et al.  Airfoil shape optimization using improved Multiobjective Territorial Particle Swarm algorithm with the objective of improving stall characteristics , 2014 .

[122]  T. Simpson,et al.  Comparative studies of metamodeling techniques under multiple modeling criteria , 2000 .

[123]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[124]  Ephrahim Garcia,et al.  Bat-Inspired Wing Aerodynamics and Optimization , 2010 .

[125]  Kazuhiro Nakahashi,et al.  Aerodynamic Shape Optimization of Supersonic Wings by Adaptive Range Multiobjective Genetic Algorithms , 2001, EMO.

[126]  Ilan Kroo,et al.  Subsonic wing planform design using multidisciplinary optimization , 1995 .

[127]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[128]  J. Sobieszczanski-Sobieski,et al.  Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization , 2004 .

[129]  S. Obayashi,et al.  Efficient Global Optimization of Vortex Generators on a Super Critical Infinite-Wing Using Kriging-Based Surrogate Models , 2014 .

[130]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[131]  Ankit Chaudhary,et al.  A comparative review of approaches to prevent premature convergence in GA , 2014, Appl. Soft Comput..

[132]  Paul J. Schweitzer,et al.  Problem Decomposition and Data Reorganization by a Clustering Technique , 1972, Oper. Res..

[133]  A. Kumar ENCODING SCHEMES IN GENETIC ALGORITHM , 2013 .

[134]  K. Nakahashi,et al.  Unstructured dynamic mesh for large movement and deformation , 2002 .

[135]  Ranjan Ganguli,et al.  An automated hybrid genetic-conjugate gradient algorithm for multimodal optimization problems , 2005, Appl. Math. Comput..

[136]  Kazuhiro Nakahashi,et al.  Aerodynamic Design Optimization Using the Drag-Decomposition Method , 2008 .

[137]  Nasa Output Error Estimates and Mesh Refinement in Aerodynamic Shape Optimization , 2013 .

[138]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[139]  Franco Mastroddi,et al.  Multi-Disciplinary and Multi-Objective Optimization of an Unconventional Aircraft Concept , 2015 .

[140]  Christoffer Landström,et al.  Automated Aerodynamic Vehicle Shape Optimization Using Neural Networks and Evolutionary Optimization , 2015 .

[141]  Vassili Toropov,et al.  Metamodel-based collaborative optimization framework , 2009 .

[142]  Paola Cinnella,et al.  Multi-fidelity optimization strategy for the industrial aerodynamic design of helicopter rotor blades , 2015 .

[143]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[144]  Kyle,et al.  Application of Low and High Fidelity Simulation Tools to Helicopter Rotor Blade Optimization , 2009 .

[145]  Michael I. Friswell,et al.  Aerodynamic optimisation of a camber morphing aerofoil , 2015 .

[146]  Yaochu Jin,et al.  Adaptive encoding for aerodynamic shape optimization using evolution strategies , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[147]  Kenneth A. De Jong,et al.  A formal analysis of the role of multi-point crossover in genetic algorithms , 1992, Annals of Mathematics and Artificial Intelligence.

[148]  Ralf Hartmann,et al.  Adjoint‐based airfoil optimization with discretization error control , 2015 .

[149]  Pierluigi Della Vecchia,et al.  Development of Methodologies for the Aerodynamic Design and Optimization of New Regional Turboprop Aircraft , 2013 .

[150]  George N. Barakos,et al.  Adjoint-Based Optimisation of Ducted Propellers for Hybrid Air Vehicles , 2016 .

[151]  A. Jameson,et al.  Optimum Aerodynamic Design Using the Navier–Stokes Equations , 1997 .

[152]  T. Whittaker,et al.  Near-optimal propulsion-system operation for an air-breathing launch vehicle , 1995 .

[153]  Chris Manzie,et al.  Aerodynamic Shape Optimization via Global Extremum Seeking , 2015, IEEE Transactions on Control Systems Technology.

[154]  Sébastien Le Digabel,et al.  Algorithm xxx : NOMAD : Nonlinear Optimization with the MADS algorithm , 2010 .

[155]  George S. Dulikravich,et al.  Three-Dimensional Aerodynamic Shape Optimization Using Genetic and Gradient Search Algorithms , 1997 .

[156]  Olympia Roeva,et al.  Improvement of genetic algorithm performance for identification of cultivation process models , 2008 .

[157]  David E. Goldberg,et al.  Genetic Algorithms, Tournament Selection, and the Effects of Noise , 1995, Complex Syst..

[158]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[159]  Yew-Soon Ong,et al.  Hybrid evolutionary algorithm with Hermite radial basis function interpolants for computationally expensive adjoint solvers , 2008, Comput. Optim. Appl..

[160]  T. Pulliam,et al.  A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization , 2008 .

[161]  M. Ben Ghalia,et al.  Particle swarm optimization with an improved exploration-exploitation balance , 2008 .

[162]  Kazuhiro Nakahashi,et al.  Multidisciplinary Design Exploration for a Winglet , 2008 .

[163]  Kevin John Rafferty A comparison study of search heuristics for an autonomous multi-vehicle air-sea rescue system , 2014 .

[164]  Sergey Peigin,et al.  Multiconstrained aerodynamic design of business jet by CFD driven optimization tool , 2008 .

[165]  Kwang‐Yong Kim,et al.  Optimization of the Aerodynamic and Aeroacoustic Performance of an Axial-Flow Fan , 2014 .

[166]  Lin Cao,et al.  Aerodynamic configuration optimization for hypersonic gliding vehicle based on improved hybrid multi-objective PSO algorithm , 2015, 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC).

[167]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[168]  Meng-Sing Liou,et al.  Multiobjective optimization using coupled response surface model and evolutionary algorithm , 2004 .

[169]  Hugo Gagnon,et al.  High-fidelity Aerodynamic Shape Optimization of Unconventional Aircraft through Axial Deformation , 2014 .

[170]  Dieter Kraft,et al.  Algorithm 733: TOMP–Fortran modules for optimal control calculations , 1994, TOMS.

[171]  Komahan Boopathy,et al.  A Multivariate Interpolation and Regression Enhanced Kriging Surrogate Model , 2013 .

[172]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[173]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[174]  J. Alonso,et al.  Complete Configuration Aero-Structural Optimization Using a Coupled Sensitivity Analysis Method , 2002 .

[175]  Domenico Quagliarella,et al.  Aerodynamic shape design using hybrid evolutionary computing and multigrid-aided finite-difference evaluation of flow sensitivities , 2015 .

[176]  Giuseppe Gibertini,et al.  Aerodynamic blade design with multi-objective optimization for a tiltrotor aircraft , 2015 .

[177]  Malcolm I. G. Bloor,et al.  Aerodynamic Design of a Flying Wing Using Response Surface Methodology , 2000 .

[178]  Tobias Wunderlich,et al.  Multidisciplinary wing optimization of commercial aircraft with consideration of static aeroelasticity , 2015 .

[179]  William H. Press,et al.  Simulated Annealing Optimization over Continuous Spaces , 1991 .

[180]  Christian B Allen,et al.  CFD‐based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation , 2008 .

[181]  Ping-Lang Yen,et al.  Engineering Applications of Intelligent Monitoring and Control 2014 , 2013 .

[182]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[183]  Nikolaos V. Sahinidis,et al.  Simulation optimization: a review of algorithms and applications , 2014, 4OR.

[184]  Ernesto Benini,et al.  Multiobjective-Multipoint Rotor Blade Optimization in Forward Flight Conditions Using Surrogate-Assisted Memetic Algorithms , 2011 .

[185]  Jason E. Hicken,et al.  Aerodynamic Optimization Algorithm with Integrated Geometry Parameterization and Mesh Movement , 2010 .

[186]  Emily A. Leylek,et al.  Drawing Insight From Nature: A Bat Wing for Morphing Aircraft , 2008 .

[187]  J. Alonso,et al.  A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design , 2005 .

[188]  Yudong Zhang,et al.  A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications , 2015 .

[189]  Shigeru Obayashi,et al.  Kriging/RBF-Hybrid Response Surface Methodology for Highly Nonlinear Functions , 2012 .

[190]  A. Keane,et al.  The development of a hybridized particle swarm for kriging hyperparameter tuning , 2011 .

[191]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary aerospace design optimization - Survey of recent developments , 1996 .

[192]  Raphael T. Haftka,et al.  Response surface approximation of Pareto optimal front in multi-objective optimization , 2007 .

[193]  Ilan Kroo,et al.  Multidisciplinary Considerations in the Design of Wings and Wing Tip Devices , 2010 .

[194]  Richard W. Eglese,et al.  Simulated annealing: A tool for operational research , 1990 .

[195]  Euan McGookin,et al.  Optimisation of sliding mode controllers for marine applications : a study of methods and implementation issues , 1997 .

[196]  Jenn-Long Liu,et al.  Novel Taguchi-Simulated Annealing Method Applied to Airfoil and Wing Planform Optimization , 2006 .

[197]  Ke Zhao,et al.  Aerodynamic design optimization of nacelle/pylon position on an aircraft , 2013 .

[198]  Colin R. Reeves,et al.  Using Genetic Algorithms with Small Populations , 1993, ICGA.

[199]  Robert Haimes,et al.  Multifidelity Optimization for Variable-Complexity Design , 2006 .

[200]  Fabrizio Nicolosi,et al.  Aerodynamic guidelines in the design and optimization of new regional turboprop aircraft , 2014 .

[201]  Vincent Herbert,et al.  Hybrid method for aerodynamic shape optimization in automotive industry , 2004 .

[202]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[203]  Dong Zhang,et al.  Overall Performance Analysis–Oriented Aerodynamic Configuration Optimization Design for Hypersonic Vehicles , 2017 .

[204]  Johann Sienz,et al.  Particle Swarm Optimization: Fundamental Study and its Application to Optimization and to Jetty Scheduling Problems , 2021, ArXiv.

[205]  Jim W Hall,et al.  Volumetric Shape Parameterisation for Combined Aerodynamic Geometry and Topology Optimisation , 2015 .

[206]  Joaquim R. R. A. Martins,et al.  Aerostructural Optimization of Nonplanar Lifting Surfaces , 2010 .

[207]  Krystel K. Castillo-Villar,et al.  A Hybrid Metaheuristic-Based Approach for the Aerodynamic Optimization of Small Hybrid Wind Turbine Rotors , 2014 .

[208]  Ting Yee Lim Structured population genetic algorithms: a literature survey , 2012, Artificial Intelligence Review.

[209]  J. Sobieszczanski-Sobieski,et al.  A linear decomposition method for large optimization problems. Blueprint for development , 1982 .

[210]  Graeme J. Kennedy,et al.  High aspect ratiowing design: Optimal aerostructural tradeoffs for the next generation of materials , 2014 .

[211]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[212]  Hossein Zare-Behtash,et al.  Aerodynamic Optimisation of Non-planar Lifting Surfaces , 2016 .

[213]  Xiongqing Yu,et al.  Aerodynamic/Stealthy/Structural Multidisciplinary Design Optimization of Unmanned Combat Air Vehicle , 2009 .

[214]  Domenico Quagliarella,et al.  Airfoil and wing design through hybrid optimization strategies , 1998 .

[215]  B. Epstein,et al.  Multipoint Aerodynamic Design of Wing-Body Configurations for Minimum Drag , 2007 .

[216]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[217]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[219]  Volker Schulz,et al.  Response Surface Methods for Efficient Aerodynamic Surrogate Models , 2013 .

[220]  J. Martins,et al.  Benchmarking Optimization Algorithms for Wing Aerodynamic Design Optimization , 2014 .

[221]  Daniel J Poole,et al.  Optimization of Vane-Type Vortex Generators for Tiltrotor Wings using Computational Fluid Dynamics , 2016 .

[222]  Ernesto Benini,et al.  Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor , 2003 .

[223]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[224]  Lothar M. Schmitt,et al.  Theory of Genetic Algorithms II: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling , 2004, Theor. Comput. Sci..

[225]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[226]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[227]  Layne T. Watson,et al.  Efficient global optimization algorithm assisted by multiple surrogate techniques , 2012, Journal of Global Optimization.