A Stochastic Target Approach for P&L Matching Problems
暂无分享,去创建一个
[1] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .
[2] Bruno Bouchard,et al. Barrier Option Hedging under Constraints: A Viscosity Approach , 2006, SIAM J. Control. Optim..
[3] Hans Föllmer,et al. Quantile hedging , 1999, Finance Stochastics.
[4] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[5] Jakša Cvitanić,et al. Super-replication in stochastic volatility models under portfolio constraints , 1999, Journal of Applied Probability.
[6] Erhan Bayraktar,et al. Outperforming the Market Portfolio with a Given Probability , 2010, 1006.3224.
[7] H. Soner,et al. Dynamic programming for stochastic target problems and geometric flows , 2002 .
[8] Nizar Touzi,et al. Stochastic Target Problems, Dynamic Programming, and Viscosity Solutions , 2002, SIAM J. Control. Optim..
[9] H. Föllmer,et al. Optional decompositions under constraints , 1997 .
[10] Nizar Touzi,et al. The Problem of Super-replication under Constraints , 2003 .
[11] B. Bouchard. Stochastic Target with Mixed diffusion processes , 2002 .
[12] Maurizio Falcone,et al. An approximation scheme for the optimal control of diffusion processes , 1995 .
[13] D. Moore. Simplicial Mesh Generation with Applications , 1992 .
[14] Bruno Bouchard,et al. Stochastic Target Problems with Controlled Loss , 2009, SIAM J. Control. Optim..
[15] G. Barles,et al. Convergence of approximation schemes for fully nonlinear second order equations , 1991 .
[16] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.
[17] Bruno Bouchard,et al. Generalized stochastic target problems for pricing and partial hedging under loss constraints—application in optimal book liquidation , 2013, Finance Stochastics.